首页> 美国卫生研究院文献>Journal of Bacteriology >Continued Protein Synthesis at Low ATP and GTP Enables Cell Adaptation during Energy Limitation
【2h】

Continued Protein Synthesis at Low ATP and GTP Enables Cell Adaptation during Energy Limitation

机译:在ATP和GTP较低的情况下持续进行蛋白质合成可在能量限制期间实现细胞适应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of biology's critical ironies is the need to adapt to periods of energy limitation by using the energy-intensive process of protein synthesis. Although previous work has identified the individual energy-requiring steps in protein synthesis, we still lack an understanding of the dependence of protein biosynthesis rates on [ATP] and [GTP]. Here, we used an integrated Escherichia coli cell-free platform that mimics the intracellular, energy-limited environment to show that protein synthesis rates are governed by simple Michaelis-Menten dependence on [ATP] and [GTP] (KmATP, 27 ± 4 μM; KmGTP, 14 ± 2 μM). Although the system-level GTP affinity agrees well with the individual affinities of the GTP-dependent translation factors, the system-level KmATP is unexpectedly low. Especially under starvation conditions, when energy sources are limited, cells need to replace catalysts that become inactive and to produce new catalysts in order to effectively adapt. Our results show how this crucial survival priority for synthesizing new proteins can be enforced after rapidly growing cells encounter energy limitation. A diminished energy supply can be rationed based on the relative ATP and GTP affinities, and, since these affinities for protein synthesis are high, the cells can adapt with substantial changes in protein composition. Furthermore, our work suggests that characterization of individual enzymes may not always predict the performance of multicomponent systems with complex interdependencies. We anticipate that cell-free studies in which complex metabolic systems are activated will be valuable tools for elucidating the behavior of such systems.
机译:生物学的重要讽刺之一是需要通过使用蛋白质合成过程中的能量密集型过程来适应能量受限的时期。尽管以前的工作已经确定了蛋白质合成中的各个能量消耗步骤,但我们仍然对蛋白质生物合成速率对[ATP]和[GTP]的依赖性缺乏了解。在这里,我们使用了模拟细胞内能量受限环境的集成大肠埃希氏大肠杆菌无细胞平台,以表明蛋白质合成速率由简单的Michaelis-Menten对[ATP]和[GTP]的依赖性控制(Km ATP < / sup>,27±4μM; Km GTP ,14±2μM)。尽管系统级GTP亲和力与依赖GTP的翻译因子的亲和力很好,但系统级Km ATP 却出乎意料地低。尤其是在饥饿条件下,当能源有限时,电池需要更换变得不活泼的催化剂并生产新的催化剂才能有效适应。我们的结果表明,在快速生长的细胞遇到能量限制后,如何强制执行至关重要的合成新蛋白优先生存顺序。可以根据ATP和GTP的相对亲和力来分配减少的能量供应,并且由于这些蛋白质合成亲和力很高,因此细胞可以适应蛋白质组成的实质性变化。此外,我们的工作表明,单个酶的表征可能并不总是预测具有复杂相互依赖性的多组分系统的性能。我们预计,激活复杂代谢系统的无细胞研究将是阐明此类系统行为的有价值的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号