首页> 美国卫生研究院文献>Journal of Bacteriology >Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158
【2h】

Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158

机译:球形光养细菌球形红细菌DSM158中小睡基因表达和周质硝酸还原酶活性的调节。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial periplasmic nitrate reductases (Nap) can play different physiological roles and are expressed under different conditions depending on the organism. Rhodobacter sphaeroides DSM158 has a Nap system, encoded by the napKEFDABC gene cluster, but nitrite formed is not further reduced because this strain lacks nitrite reductase. Nap activity increases in the presence of nitrate and oxygen but is unaffected by ammonium. Reverse transcription-PCR and Northern blots demonstrated that the napKEFDABC genes constitute an operon transcribed as a single 5.5-kb product. Northern blots and nap-lacZ fusions revealed that nap expression is threefold higher under aerobic conditions but is regulated by neither nitrate nor ammonium, although it is weakly induced by nitrite. On the other hand, nitrate but not nitrite causes a rapid enzyme activation, explaining the higher Nap activity found in nitrate-grown cells. Translational nap′-′lacZ fusions reveal that the napK and napD genes are not efficiently translated, probably due to mRNA secondary structures occluding the translation initiation sites of these genes. Neither butyrate nor caproate increases nap expression, although cells growing phototrophically on these reduced substrates show a very high Nap activity in vivo (nitrite accumulation is sevenfold higher than in medium with malate). Phototrophic growth on butyrate or caproate medium is severely reduced in the NapA mutants. Taken together, these results indicate that nitrate reduction in R. sphaeroides is mainly regulated at the level of enzyme activity by both nitrate and electron supply and confirm that the Nap system is involved in redox balancing using nitrate as an ancillary oxidant to dissipate excess reductant.
机译:细菌周质硝酸盐还原酶(Nap)可以发挥不同的生理作用,并根据生物体在不同条件下表达。球形红细菌DSM158具有由napKEFDABC基因簇编码的Nap系统,但是亚硝酸盐的形成并没有进一步减少,因为该菌株缺少亚硝酸还原酶。在硝酸盐和氧气的存在下,午睡活性增加,但不受铵的影响。逆转录PCR和Northern印迹证明napKEFDABC基因构成一个操纵子,转录为单个5.5kb产物。 Northern印迹和nap-lacZ融合显示,在有氧条件下,nap表达高三倍,但不受亚硝酸盐或铵盐的调节,尽管亚硝酸盐对亚硝酸盐的诱导很弱。另一方面,硝酸盐而非亚硝酸盐会引起酶的快速活化,这说明了硝酸盐生长的细胞中Nap活性较高。翻译nap'-'lacZ融合表明,napK和napD基因不能有效翻译,可能是由于mRNA二级结构遮挡了这些基因的翻译起始位点。丁酸酯和己酸酯都不增加小睡表达,尽管在这些减少的底物上光养生长的细胞在体内显示出非常高的Nap活性(亚硝酸盐积累比苹果酸培养基高7倍)。 NapA -突变体在丁酸或己酸根培养基上的光养生长严重降低。两者合计,这些结果表明,球形红球菌的硝酸盐还原主要受硝酸盐和电子供应的调节,在酶活性水平上,并证实Nap系统参与了使用硝酸盐作为辅助氧化剂消散过量还原剂的氧化还原平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号