首页> 美国卫生研究院文献>Journal of Biological Physics >A two-step patterning process increases the robustness of periodic patterning in the fly eye
【2h】

A two-step patterning process increases the robustness of periodic patterning in the fly eye

机译:两步构图过程提高了蝇眼中周期性构图的鲁棒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities (‘noise’) inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects.>Author summaryComplex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this ‘noisy’ environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations (‘noise’) in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network. >Electronic supplementary material The online version of this article (doi: 10.1007/s10867-016-9409-4) contains supplementary material, which is available to authorized users.
机译:复杂的周期模式可以通过可扩散的激活剂和抑制剂之间的动态相互作用来自组织。在生物环境中,自组织模式受到生物系统固有的空间异质性(“噪声”)的挑战。空间可变性如何影响周期性图案形成机制以及如何对其进行缓冲以确保精确的图案形成尚不十分清楚。我们研究了空间异质性对果蝇眼周期性图案的影响,果蝇眼是由约800个微型眼单元(眼病)组成的器官,其沿六边形晶格的周期性排列在果蝇发育的早期阶段自组织。图案形成过程分两步进行,首先形成约10个单元的均匀间隔的簇,然后将每个簇精炼为单个选定的单元。使用概率方法,我们计算了由于细胞大小,位置和生物合成能力的空间异质性而导致的图案错误率。值得注意的是,错误率在很大程度上与所需的簇大小无关,但是遵循信令速度的分布。因此,大簇的预形成极大地提高了整个周期性排列的可重复性,这表明两阶段的构图过程起到了保护构图免受空间异质性导致的错误的作用。我们的结果强调了需要缓冲随机效应而对自组织构图机制施加的约束。>作者摘要复杂的周期性模式在自然界中很常见,并且在物理,化学和生物系统中都可以观察到。了解如何以精确的方式生成这些模式是一个关键的挑战。生物模式尤其令人着迷,因为它们是在嘈杂的环境中产生的。例如,细胞位置和细胞大小会发生随机变化,介导细胞间通信的化学信号强度也会发生随机变化。在这种“嘈杂”的环境中产生精确而强大的图案的需求限制了可在生物环境中发挥作用的图案形成机制的空间。数学建模可用于比较不同机制对此类变化的敏感性,从而突出其设计的关键方面。我们使用数学建模来研究果蝇眼的周期性图案。在该系统中,在二维细胞上皮细胞中生成分化细胞的高度有序的晶格。首先通过表达特定基因的约10个细胞的均匀间隔簇的出现观察到这种模式。随后将每个簇精炼成单个细胞,该细胞启动微型眼单元即眼孔的形成和分化。我们根据构图机制的已知分子特性制定了数学模型,并使用概率方法计算了在不同定量参数中因细胞间随机变化(“噪声”)而导致的簇形成和精细化过程中的误差。这使我们能够定义对噪声灵敏度影响最大的参数。值得注意的是,我们发现此误差大致与所需的簇大小无关,这表明大簇有利于确保周期性簇排列的总体可重复性。在集群优化阶段,我们发现单元之间的快速通信对于减少错误至关重要。我们的工作提供了对在现实,嘈杂的环境中生成周期性图案的机制所施加的约束的新见解,尤其是讨论了在实现图案网络的最佳设计中的不同考虑因素。 >电子补充材料本文的在线版本(doi:10.1007 / s10867-016-9409-4)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号