首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity
【2h】

Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity

机译:通过细菌细胞分裂调节剂MinE分析构象变化和膜结合在刺激MinD ATPase活性中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The bacterial cell division regulators MinD and MinE together with the division inhibitor MinC localize to the membrane in concentrated zones undergoing coordinated pole-to-pole oscillation to help ensure that the cytokinetic division septum forms only at the mid-cell position. This dynamic localization is driven by MinD-catalyzed ATP hydrolysis, stimulated by interactions with MinE's anti-MinCD domain. This domain is buried in the 6-β–stranded MinE “closed” structure, but is liberated for interactions with MinD, giving rise to a 4-β–stranded “open” structure through an unknown mechanism. Here we show that MinE–membrane interactions induce a structural change into a state resembling the open conformation. However, MinE mutants lacking the MinE membrane-targeting sequence stimulated higher ATP hydrolysis rates than the full-length protein, indicating that binding to MinD is sufficient to trigger this conformational transition in MinE. In contrast, conformational change between the open and closed states did not affect stimulation of ATP hydrolysis rates in the absence of membrane binding, although the MinD-binding residue Ile-25 is critical for this conformational transition. We therefore propose an updated model where MinE is brought to the membrane through interactions with MinD. After stimulation of ATP hydrolysis, MinE remains bound to the membrane in a state that does not catalyze additional rounds of ATP hydrolysis. Although the molecular basis for this inhibited state is unknown, previous observations of higher-order MinE self-association may explain this inhibition. Overall, our findings have general implications for Min protein oscillation cycles, including those that regulate cell division in bacterial pathogens.
机译:细菌细胞分裂调节剂MinD和MinE与分裂抑制剂MinC一起位于集中区域的膜,该区域经历协调的极对极振动,以帮助确保仅在细胞中间位置形成细胞动力学分裂间隔。这种动态定位是受MinD催化的ATP水解驱动的,该水解受与MinE的抗MinCD域相互作用的刺激。该结构域被埋在6-β链的MinE“封闭”结构中,但由于与MinD的相互作用而被释放,从而通过未知机制产生了4-β链的“开放”结构。在这里,我们表明MinE-膜相互作用将结构改变变成类似于开放构象的状态。但是,缺少MinE膜靶向序列的MinE突变体比全长蛋白刺激的ATP水解速率更高,表明与MinD的结合足以触发MinE中的这种构象转变。相反,在不存在膜结合的情况下,打开状态和关闭状态之间的构象变化并不影响ATP水解速率的刺激,尽管MinD结合残基Ile-25对于这种构象转变至关重要。因此,我们提出了一个更新的模型,其中通过与MinD的相互作用将MinE带到膜上。刺激ATP水解后,MinE仍以不催化其他ATP水解循环的状态与膜结合。尽管尚不清楚这种抑制状态的分子基础,但先前对高阶MinE自缔合的观察可能可以解释这种抑制作用。总体而言,我们的发现对Min蛋白振荡周期具有普遍意义,包括那些调节细菌病原体中细胞分裂的周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号