首页> 美国卫生研究院文献>Communications Biology >Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins
【2h】

Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins

机译:亮绿色和红色荧光蛋白的比例钙传感器的合理工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

a Schematic representation of the sensor construct linking the RFP (mScarlet), calcium sensing domain (TnC), and circularly permuted GFP-analog in series. The two inset images represent the fluorescence intensity in the two imaged channels from one example cell. The illumination intensity was 5 mW/mm2. The scale bar is 20 µm. b A schematic illustration shows various sensor designs that maximized on the Ca2+ sensitivity after improvements through amino acid truncation, circularly permutation, sensing domain optimization, linker optimization, and donor optimization. The XFP referred to a set of fluorescent proteins including mNeonGreen, mCitrine, EGFP, mClover3, or mVenus. c The FRET efficiency of the sensor and the quantum yield of the acceptor remained high for truncations of mScarlet shorter than 9 amino acids. Larger truncations not only extinguished the red fluorescence, but also significantly reduced the FRET efficiency between the green and red fluorescent proteins. The horizontal dash represents the reported quantum yield of native mScarlet. (d) Circular permutation of the mCitrine donor at specific locations optimized the FRET efficiency change between the sensors’ Ca2+-resting state and Ca2+-saturated state. e Sensors using the TnC2 calcium sensing domain had significantly higher Ca2+-saturated FRET efficiency (yellow) and the Ca2+-resting state FRET efficiency (green) than those of sensors using the TnC3 calcium sensing domain. f The relationship between the resting-Ca2+ FRET efficiency of sensors and the change in FRET efficiency for various linkers between sensing domains and fluorescent proteins. The optimal linker for each donor (open triangular and circular symbols) had both high resting FRET efficiency and high FRET efficiency change. g The relationship between the various FP pairs’ resting FRET efficiency and change in FRET efficiency between Ca2+-resting and Ca2+-saturated states. Dots represent FRET metrics measured from individual cells, while the symbols represent the mean FRET metrics of each variant. All error bars are s.e.m., n ≥ 10 cells for each sensor. All statistical tests were the two-sided Wilcoxon rank-sum test, where * signifies p < 0.1, ** signifies p < 0.01, *** signifies p < 0.001, n.s. signifies not significant.
机译:将RFP(Mscarlet),钙感测结构域(TNC)和圆形允许的GFP-类似物的传感器构建传感器构建体的示意图。两个插图图像代表来自一个示例单元的两个成像信道中的荧光强度。照明强度为5mW / mm2。秤杆为20μm。 B示意图显示了通过氨基酸截短,圆形置换,感测结构域优化,接头优化和供体优化改善后的CA2 +敏感性最大化的各种传感器设计。 XFP提到了一组荧光蛋白,包括mneongreen,mcIrline,egfp,mclover3或mvenus。 c传感器的褶皱效率和受体的量子产量保持高,对于短于9个氨基酸,截断的截断。较大的截短不仅熄灭了红色荧光,而且还显着降低了绿色和红色荧光蛋白之间的质量效率。水平划线表示本机Mscarlet的报告量子产量。 (d)在特定位置处的麦克拉供体的圆形置换优化了传感器CA2 + - + - 饱和状态和CA2 +饱和状态之间的FRET效率变化。使用TNC2钙感测结构域的E传感器显着提高CA2 +饱和效率(黄色)和CA2 + - + - 使用使用TNC3钙传感结构域的传感器的效率(绿色)。 F传感器静止-CA2 + FRET效率之间的关系及对传感结构域和荧光蛋白之间的各种接头的压力效率变化。每个供体(开放三角形和圆形符号)的最佳连接器具有高静息效率和高尺寸效率变化。 g与CA2 + - + - +饱和状态之间的各种FP对休息效率与FRET效率的关系。点表示从单个单元格测量的褶皱度量,而符号表示每个变体的平均荧光度量。所有误差条都是S.E.M.,每个传感器的N≥10个单元。所有统计测试都是双面Wilcoxon秩 - 和测试,其中*表示P <0.1,**表示P <0.01,***表示P <0.001,N.S.表示不显着。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号