首页> 美国卫生研究院文献>Communications Biology >Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep
【2h】

Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep

机译:解码脑状态对人类脑动力学的内在歧管对清醒和睡眠

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

a–d A classic example that illustrates manifold embedding; i.e., manifold learning applied to the swiss roll data, which is intrinsically a two-dimensional dataset yet represented in a higher (three-dimensional) space. To estimate the low dimensional embedding of the sampled dataset (b), we first create a graph representation (c), where the nodes represent the data points shown in (b), which are sampled from the underlying manifold illustrated in (a), and the edges indicate the relations (distances and/or similarities) between data points. d The manifold is embedded into the low-dimensional representation that matches its intrinsic dimensionality using the Laplacian eigenmaps manifold learning. e–g Our framework applying the same manifold learning approach, i.e. Laplacian eigenmaps, to extract the manifold underlying brain dynamics measured in fMRI data. e For each time point, the fMRI BOLD signal is parcellated into the 90 brain areas defined by the AAL template and pre-processed as explained in the “Methods“ section. f Using the parcellated fMRI data, the instantaneous phase is computed via Hilbert transform and the phase coherence among brain areas is estimated. This phase coherency matrix characterizes the pairwise synchrony relations between each pair of brain areas at any given time point. g The intrinsic manifold (here illustrated as two-dimensional) underlying the set of all instantaneous phase coherence states is estimated using the Laplacian eigenmaps method. To visualize the changes in phase coherency throughout the intrinsic manifold, for illustration purposes we defined 2-dimensional (2D) bins using the two manifold dimensions, and computed the average phase coherency of data points in those bins. Different colors indicate different sleep stages and wakefulness as defined by polysomnography.
机译:A-D一个典型的示例,说明歧管嵌入;即,歧管学习应用于瑞士滚动数据,这是内在的二维数据集,尚在更高(三维)空间中表示。为了估计采样数据集(B)的低维嵌入,我们首先创建图表表示(c),其中节点表示(b)中所示的数据点,其从(a)中所示的底层歧管中采样,并且边缘表示数据点之间的关系(距离和/或相似度)。 d将歧管嵌入到使用Laplacian Eigenmaps歧管学习匹配其内在维度的低维表示中。 E-G我们的框架应用相同的歧管学习方法,即拉普拉斯特征,以提取在FMRI数据中测量的歧管底层脑动力学。 E对于每个时间点,FMRI粗体信号被锁定到由AAL模板定义的90个脑区域,并如“方法”部分中所述预处理。 F使用Parcellated FMRI数据,瞬时阶段通过Hilbert变换计算,估计脑区域之间的相干关系。该相色差矩阵表征在任何给定时间点的每对大脑区域之间的成对同步关系。 G使用Laplacian Eigenmaps方法估计包括所有瞬时相干状态的底层的内在歧管(这里被称为二维)。为了在整个内在歧管中可视化相色变的变化,出于说明目的,我们使用两个歧管尺寸定义了二维(2D)箱,并计算这些箱中的数据点的平均相干性。不同颜色表示不同的睡眠阶段和PolySomNography所定义的觉醒阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号