首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity
【2h】

Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity

机译:嵌合二氢酚酸还原酶显示模块化和生物物理多样性的性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While reverse genetics and functional genomics have long affirmed the role of individual mutations in determining protein function, there have been fewer studies addressing how large‐scale changes in protein sequences, such as in entire modular segments, influence protein function and evolution. Given how recombination can reassort protein sequences, these types of changes may play an underappreciated role in how novel protein functions evolve in nature. Such studies could aid our understanding of whether certain organismal phenotypes related to protein function—such as growth in the presence or absence of an antibiotic—are robust with respect to the identity of certain modular segments. In this study, we combine molecular genetics with biochemical and biophysical methods to gain a better understanding of protein modularity in dihydrofolate reductase (DHFR), an enzyme target of antibiotics also widely used as a model for protein evolution. We replace an integral α‐helical segment of Escherichia coli DHFR with segments from a number of different organisms (many nonmicrobial) and examine how these chimeric enzymes affect organismal phenotypes (e.g., resistance to an antibiotic) as well as biophysical properties of the enzyme (e.g., thermostability). We find that organismal phenotypes and enzyme properties are highly sensitive to the identity of DHFR modules, and that this chimeric approach can create enzymes with diverse biophysical characteristics.
机译:虽然逆向遗传和功能基因组学长期肯定了个体突变在确定蛋白质功能时的作用,但研究了较少的研究,解决了蛋白质序列的大规模变化,例如在整个模块化段,影响蛋白质功能和进化。鉴于重组如何重新组合蛋白质序列,这些类型的变化可能在新的蛋白质功能如何在自然中发育出来的缺点。这些研究可以有助于我们理解某些与蛋白质功能相关的有机体表型 - 例如在存在或不存在抗生素的生长中是否相对于某些模块化段的身份稳健。在这项研究中,我们将分子遗传学与生物化学和生物物理方法相结合,以更好地了解二氢醇还原酶(DHFR)中的蛋白质模块化,抗生素的酶靶标也被广泛用作蛋白质演化的模型。我们用来自许多不同生物(许多非杀菌剂)的细胞分段替换大肠杆菌DHFR的整体α-螺旋片段,并检查这些嵌合酶如何影响有机体表型(例如,抗性抗生素)以及酶的生物物理性质(例如,热稳定性)。我们发现有机体表型和酶属性对DHFR模块的身份高度敏感,并且这种嵌合方法可以产生具有不同生物物理特征的酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号