首页> 美国卫生研究院文献>BMC Bioinformatics >Sparse reduced-rank regression for integrating omics data
【2h】

Sparse reduced-rank regression for integrating omics data

机译:用于集成OMICS数据的稀疏降低排名回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advances in technologies and data collection processes have resulted in multiple high dimensional data types being measured on the same subjects. For instance, in biomedical research, these data types include genomics, metabolomics, proteomics, and transcriptomics. While each of these data types provide a different snapshot of the underlying biological system, it is being increasingly recognized that combining these data types can reveal complex relationships that may not be unraveled from individual analyses. For instance, the integration of genomic and metabolomic/proteomic data can provide valuable insight into key genomic loci that influence human plasma levels associated with complex diseases [1]. This is of great interest because genomic studies including genome wide association studies (GWAS) have revealed that the majority of disease-causing single nucleotide polymorphisms (SNPs) lie in noncoding regions of the genome [2], making it difficult to know their functional implications. While individual genomic variants identified through GWAS can be tested experimentally, this approach is complicated by the modest effects of the identified variants and the fact that we may not know the specific gene driving the genomic association [3]. Integration of genomics data with other omics data can therefore enable us to identify genomic variants that could generate hypotheses for the genomic architecture of the underlying disease, or could identify variants that have the potential to improve clinical factors. Since the metabolome is considered as the end product of all genetic, epigenetic, and environment activities [4, 5], linking metabolite levels in human blood samples with genomics data can help shed light on complex disease-causing genomic variants. Additionally, tying genomic variants to metabolite levels can identify metabolites that can be used as biomarkers or potential targets for drug discovery [1]. A review of studies that combine genomics and metabolomics data can be found in [3]. In a recent study [1], genomics data were linked with protein levels known to be associated with cardiovascular disease (CVD) and many new gene locus-protein associations were unraveled, providing new insight into CVD risk pathophysiology [1].
机译:技术和数据收集过程的进步导致在同一主题上测量多维数据类型。例如,在生物医学研究中,这些数据类型包括基因组学,代谢组科,蛋白质组学和转录组科。虽然这些数据类型中的每一个提供不同的底层生物系统的快照,但是越来越识别出结合这些数据类型可以揭示可能不从个体分析中解开的复杂关系。例如,基因组和代谢物/蛋白质组学数据的整合可以为影响与复杂疾病相关的人血浆水平的关键基因组基因座进行有价值的洞察力[1]。这具有很大的兴趣,因为基因组研究包括基因组宽协会研究(GWAS)揭示了大多数疾病导致的单一核苷酸多态性(SNP)位于基因组的非编码区域[2],使其难以知道其功能影响。虽然通过GWAS确定的个体基因组变体可以通过实验测试,但是通过所识别的变体的适度效应以及我们可能不知道驱动基因组关联的特定基因的事实,这种方法是复杂的。因此,基因组学数据与其他OMICS数据的整合可以使我们识别可能产生对潜在疾病的基因组结构的假设的基因组变体,或者可以识别有可能改善临床因素的变体。由于代谢物被认为是所有遗传,表观遗传和环境活动的最终产物[4,5],因此将人类血液样本中的代谢物水平与基因组学数据连接,可以帮助脱落在复杂的疾病导致基因组变体上。另外,将基因组变体与代谢物水平绑定可以鉴定可用作生物标志物或药物发现潜在靶标的代谢物[1]。对基因组学和代谢组合数据的研究综述可以在[3]中找到。在最近的一项研究中,基因组学数据与已知与心血管疾病(CVD)相关的蛋白质水平有关,并且解开了许多新的基因毒素 - 蛋白质关联,为CVD风险病理生理学提供了新的洞察力[1]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号