首页> 美国卫生研究院文献>Biomicrofluidics >On-chip surface acoustic wave and micropipette aspiration techniques to assess cell elastic properties
【2h】

On-chip surface acoustic wave and micropipette aspiration techniques to assess cell elastic properties

机译:芯片表面声波和微移液素吸气技术评估细胞弹性性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cytoskeletal mechanics and cell mechanical properties play an important role in cellular behaviors. In this study, in order to provide comprehensive insights into the relationship between different cytoskeletal components and cellular elastic moduli, we built a phase-modulated surface acoustic wave microfluidic device to measure cellular compressibility and a microfluidic micropipette-aspiration device to measure cellular Young's modulus. The microfluidic devices were validated based on experimental data and computational simulations. The contributions of structural cytoskeletal actin filament and microtubule to cellular compressibility and Young's modulus were examined in MCF-7 cells. The compressibility of MCF-7 cells was increased after microtubule disruption, whereas actin disruption had no effect. In contrast, Young's modulus of MCF-7 cells was reduced after actin disruption but unaffected by microtubule disruption. The actin filaments and microtubules were stained to confirm the structural alteration in cytoskeleton. Our findings suggest the dissimilarity in the structural roles of actin filaments and microtubules in terms of cellular compressibility and Young's modulus. Based on the differences in location and structure, actin filaments mainly contribute to tensile Young's modulus and microtubules mainly contribute to compressibility. In addition, different responses to cytoskeletal alterations between acoustophoresis and micropipette aspiration demonstrated that micropipette aspiration was better at detecting the change from actin cortex, while the response to acoustophoresis was governed by microtubule networks.
机译:细胞骨骼力学和细胞机械性能在蜂窝行为中起重要作用。在本研究中,为了提供对不同细胞骨骼分量和细胞弹性模量之间的关系的全面见解,我们构建了一种相位调制的表面声波微流体装置,以测量细胞压缩性和微流体微量灌注器抽吸装置,以测量蜂窝杨氏模量。基于实验数据和计算模拟验证了微流体装置。在MCF-7细胞中检查了结构细胞骨骼肌动蛋白灯丝和微管对细胞可压缩性和杨氏模量的贡献。在微管破坏后MCF-7细胞的可压缩性增加,而肌动蛋白破坏无效。相比之下,肌动蛋白破坏后,杨氏-7细胞的杨氏模量减少,但不受微管破坏的影响。染色肌动蛋白细丝和微管染色以确认细胞骨架的结构改变。我们的研究结果表明,肌动蛋白长丝和微管的结构作用在细胞压缩性和杨氏模量方面的歧视。基于位置和结构的差异,肌动蛋白丝主要有助于拉伸杨氏模量,微管主要有助于压缩性。此外,对声学蛋白和微导液吸入之间的细胞骨骼改变的不同反应表明,微肺灌注液在肌动蛋白皮质的变化更好,而对声渗透压的反应受微管网络的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号