首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Tetramerization and Cooperativity in Plasmodium falciparum Glutathione S-Transferase Are Mediated by Atypic Loop 113–119
【2h】

Tetramerization and Cooperativity in Plasmodium falciparum Glutathione S-Transferase Are Mediated by Atypic Loop 113–119

机译:Atypic Loop 113–119介导恶性疟原虫谷胱甘肽S-转移酶的四聚和协同作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glutathione S-transferase of Plasmodium falciparum (PfGST) displays a peculiar dimer to tetramer transition that causes full enzyme inactivation and loss of its ability to sequester parasitotoxic hemin. Furthermore, binding of hemin is modulated by a cooperative mechanism. Site-directed mutagenesis, steady-state kinetic experiments, and fluorescence anisotropy have been used to verify the possible involvement of loop 113–119 in the tetramerization process and in the cooperative phenomenon. This protein segment is one of the most prominent structural differences between PfGST and other GST isoenzymes. Our results demonstrate that truncation, increased rigidity, or even a simple point mutation of this loop causes a dramatic change in the tetramerization kinetics that becomes at least 100 times slower than in the native enzyme. All of the mutants tested have lost the positive cooperativity for hemin binding, suggesting that the integrity of this peculiar loop is essential for intersubunit communication. Interestingly, the tetramerization process of the native enzyme that occurs rapidly when GSH is removed is prevented not only by GSH but even by oxidized glutathione. This result suggests that protection by PfGST against hemin is independent of the redox status of the parasite cell. Because of the importance of this unique segment in the function/structure of PfGST, it could be a new target for the development of antimalarial drugs.
机译:恶性疟原虫(PfGST)的谷胱甘肽S-转移酶显示出奇特的二聚体到四聚体的转变,导致完全的酶失活并丧失了螯合寄生虫毒血红素的能力。此外,通过协同机制调节血红素的结合。定点诱变,稳态动力学实验和荧光各向异性已用于验证环113–119在四聚化过程和协同现象中的可能参与。该蛋白质片段是PfGST和其他GST同工酶之间最突出的结构差异之一。我们的结果表明,该环的截短,增加的刚性,甚至是简单的点突变都会导致四聚体动力学发生戏剧性的变化,该变化至少比天然酶慢100倍。所有测试的突变体都失去了与血红素结合的正协同性,这表明该独特环的完整性对于亚单位间的通讯至关重要。有趣的是,不仅可以通过GSH阻止氧化GSH,而且可以通过氧化谷胱甘肽来防止在去除GSH时迅速发生的天然酶四聚化过程。该结果表明,PfGST针对血红素的保护与寄生虫细胞的氧化还原状态无关。由于这一独特的部分在PfGST的功能/结构中的重要性,因此它可能成为抗疟药开发的新目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号