首页> 美国卫生研究院文献>Entropy >Computer Model of Synapse Loss During an Alzheimer’s Disease-Like Pathology in Hippocampal Subregions DG CA3 and CA1—The Way to Chaos and Information Transfer
【2h】

Computer Model of Synapse Loss During an Alzheimer’s Disease-Like Pathology in Hippocampal Subregions DG CA3 and CA1—The Way to Chaos and Information Transfer

机译:在海马次区域DGCA3和CA1中的阿尔茨海默病病病变期间突触损失计算机模型 - 混沌和信息转移的方式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of the study was to compare the computer model of synaptic breakdown in an Alzheimer’s disease-like pathology in the dentate gyrus (DG), CA3 and CA1 regions of the hippocampus with a control model using neuronal parameters and methods describing the complexity of the system, such as the correlative dimension, Shannon entropy and positive maximal Lyapunov exponent. The model of synaptic breakdown (from 13% to 50%) in the hippocampus modeling the dynamics of an Alzheimer’s disease-like pathology was simulated. Modeling consisted in turning off one after the other EC2 connections and connections from the dentate gyrus on the CA3 pyramidal neurons. The pathological model of synaptic disintegration was compared to a control. The larger synaptic breakdown was associated with a statistically significant decrease in the number of spikes (R = −0.79, P < 0.001), spikes per burst (R = −0.76, P < 0.001) and burst duration (R = −0.83, P < 0.001) and an increase in the inter-burst interval (R = 0.85, P < 0.001) in DG-CA3-CA1. The positive maximal Lyapunov exponent in the control model was negative, but in the pathological model had a positive value of DG-CA3-CA1. A statistically significant decrease of Shannon entropy with the direction of information flow DG->CA3->CA1 (R = −0.79, P < 0.001) in the pathological model and a statistically significant increase with greater synaptic breakdown (R = 0.24, P < 0.05) of the CA3-CA1 region was obtained. The reduction of entropy transfer for DG->CA3 at the level of synaptic breakdown of 35% was 35%, compared with the control. Entropy transfer for CA3->CA1 at the level of synaptic breakdown of 35% increased to 95% relative to the control. The synaptic breakdown model in an Alzheimer’s disease-like pathology in DG-CA3-CA1 exhibits chaotic features as opposed to the control. Synaptic breakdown in which an increase of Shannon entropy is observed indicates an irreversible process of Alzheimer’s disease. The increase in synapse loss resulted in decreased information flow and entropy transfer in DG->CA3, and at the same time a strong increase in CA3->CA1.

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号