首页> 美国卫生研究院文献>Translational Animal Science >Forecasting dynamic body weight of nonrestrained pigs from images using an RGB-D sensor camera
【2h】

Forecasting dynamic body weight of nonrestrained pigs from images using an RGB-D sensor camera

机译:使用RGB-D传感器相机预测来自图像的非托定猪的动态体重

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Average daily gain is an indicator of the growth rate, feed efficiency, and current health status of livestock species including pigs. Continuous monitoring of daily gain in pigs aids producers to optimize their growth performance while ensuring animal welfare and sustainability, such as reducing stress reactions and feed waste. Computer vision has been used to predict live body weight from video images without direct handling of the pig. In most studies, videos were taken while pigs were immobilized at a weighing station or feeding area to facilitate data collection. An alternative approach is to capture videos while pigs are allowed to move freely within their own housing environment, which can be easily applied to the production system as no special imaging station needs to be established. The objective of this study was to establish a computer vision system by collecting RGB-D videos to capture top-view red, green, and blue (RGB) and depth images of nonrestrained, growing pigs to predict their body weight over time. Over a period of 38 d, eight growers were video recorded for approximately 3 min/d, at the rate of six frames per second, and manually weighed using an electronic scale. An image-processing pipeline in Python using OpenCV was developed to process the images. Specifically, each pig within the RGB frame was segmented by a thresholding algorithm, and the contour of the pig was identified to extract its length and width. The height of a pig was estimated from the depth images captured by the infrared depth sensor. Quality control included removing pigs that were touching the fence and sitting, as well as those showing extremely distorted shape or motion blur owing to their frequent movement. Fitting all of the morphological image descriptors simultaneously in linear mixed models yielded prediction coefficients of determination of 0.72–0.98, 0.65–0.95, 0.51–0.94, and 0.49–0.93 for 1-, 2-, 3-, and 4-d ahead forecasting, respectively, of body weight in time series cross-validation. Based on the results, we conclude that our RGB-D sensor-based imaging system coupled with the Python image-processing pipeline could potentially provide an effective approach to predict the live body weight of nonrestrained pigs from images.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号