首页> 美国卫生研究院文献>Human Brain Mapping >Evaluation of denoising strategies for task‐based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks
【2h】

Evaluation of denoising strategies for task‐based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks

机译:基于任务的功能连通性的去噪策略评估:静置与认知要求的残余运动伪像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In‐scanner head motion represents a major confounding factor in functional connectivity studies and it raises particular concerns when motion correlates with the effect of interest. One such instance regards research focused on functional connectivity modulations induced by sustained cognitively demanding tasks. Indeed, cognitive engagement is generally associated with substantially lower in‐scanner movement compared with unconstrained, or minimally constrained, conditions. Consequently, the reliability of condition‐dependent changes in functional connectivity relies on effective denoising strategies. In this study, we evaluated the ability of common denoising pipelines to minimize and balance residual motion‐related artifacts between resting‐state and task conditions. Denoising pipelines—including realignment/tissue‐based regression, PCA/ICA‐based methods (aCompCor and ICA‐AROMA, respectively), global signal regression, and censoring of motion‐contaminated volumes—were evaluated according to a set of benchmarks designed to assess either residual artifacts or network identifiability. We found a marked heterogeneity in pipeline performance, with many approaches showing a differential efficacy between rest and task conditions. The most effective approaches included aCompCor, optimized to increase the noise prediction power of the extracted confounding signals, and global signal regression, although both strategies performed poorly in mitigating the spurious distance‐dependent association between motion and connectivity. Censoring was the only approach that substantially reduced distance‐dependent artifacts, yet this came at the great cost of reduced network identifiability. The implications of these findings for best practice in denoising task‐based functional connectivity data, and more generally for resting‐state data, are discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号