首页> 美国卫生研究院文献>Molecules >Water-Tree Resistability of UV-XLPE from Hydrophilicity of Auxiliary Crosslinkers
【2h】

Water-Tree Resistability of UV-XLPE from Hydrophilicity of Auxiliary Crosslinkers

机译:来自辅助交联剂亲水性UV-XLP的水树抗性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The water-resistant characteristics of ultraviolet crosslinked polyethylene (UV-XLPE) are investigated specially for the dependence on the hydrophilicities of auxiliary crosslinkers, which is significant to develop high-voltage insulating cable materials. As auxiliary crosslinking agents of polyethylene, triallyl isocyanurate (TAIC), trimethylolpropane trimethacrylate (TMPTMA), and N,N′-m-phenylenedimaleimide (HAV2) are individually adopted to prepared XLPE materials with the UV-initiation crosslinking technique, for the study of water-tree resistance through the accelerating aging experiments with water blade electrode. The stress–strain characteristics and dynamic viscoelastic properties of UV-XLPE are tested by the electronic tension machine and dynamic thermomechanical analyzer. Monte Carlo molecular simulation is used to calculate the interaction parameters and mixing energy of crosslinker/water binary systems to analyze the compatibility between water and crosslinker molecules. Water-tree experiments verify that XLPE-TAIC represents the highest ability to inhibit the growth of water-trees, while XLPE-HAV2 shows the lowest resistance to water-trees. The stress–strain and viscoelastic properties show that the concentration of molecular chains connecting the adjacent lamellae in amorphous phase of XLPE-HAV2 is significantly higher than that of XLPE-TAIC and XLPE-TMPTMA. The molecular simulation results demonstrate that TAIC/water and TMPTMA/water binary systems possess a higher hydrophilicity than that of HAV2/water, as manifested by their lower interaction parameters and mixing free energies. The auxiliary crosslinkers can not only increase the molecular density of amorphous polyethylene between lamellae to inhibit water-tree growth, but also prevent water molecules at insulation defects from agglomerating into micro-water beads by increasing the hydrophilicity of auxiliary crosslinkers, which will evidently reduce the damage of micro-water beads on the amorphous phase in UV-XLPE. The better compatibility of TAIC and water molecules is the dominant reason accounting for the excellent water resistance of XLPE-TAIC.
机译:专门研究紫外线交联聚乙烯(UV-XLPE)的耐水特性,用于依赖于辅助交联剂的亲水性,这是显影高压绝缘电缆材料的重要性。作为聚乙烯的辅助交联剂,单独采用三羟甲基脲酸酯(TyiC),三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)和N,N'-M-苯二维酰亚胺酰亚胺(HAV2),用于使用UV-引发交联技术制备XLPE材料,用于研究通过水叶片电极加速老化实验的水树抗性。通过电子张力机和动态热机械分析仪测试UV-XLPE的应力 - 应变特性和动态粘弹性。 Monte Carlo Molecular模拟用于计算交联剂/水二元系统的相互作用参数和混合能量,分析水和交联剂分子之间的相容性。水树实验验证XLPE-TAIC代表抑制水树生长的最高能力,而XLPE-HAV2显示出对水树的最低抗性。应力 - 应变和粘弹性特性表明,连接相邻薄片在XLPE-HAV2的无定形相中的分子链浓度显着高于XLPE-TAIC和XLPE-TMPTMA。分子模拟结果表明,TAIC /水和TMPTMA /水二元系统具有比HAV2 /水更高的亲水性,如它们的较低的相互作用参数和混合的能量。辅助交联剂不仅可以提高薄片之间的无定形聚乙烯的分子密度,以抑制水树生长,而且通过增加辅助交联剂的亲水性来防止绝缘体缺陷以凝聚到微水珠中的水分子,这显然会减少辅助交联剂的亲水性UV-XLPE中非晶相对微水珠的损伤。 TAIC和水分子的较好兼容性是占XLPE-TAIC优异防水性的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号