首页> 美国卫生研究院文献>Nanomaterials >Towards Control of the Size Composition and Surface Area of NiO Nanostructures by Sn Doping
【2h】

Towards Control of the Size Composition and Surface Area of NiO Nanostructures by Sn Doping

机译:通过SN掺杂控制NiO纳米结构的大小组合物和表面积

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Achieving nanostructures with high surface area is one of the most challenging tasks as this metric usually plays a key role in technological applications, such as energy storage, gas sensing or photocatalysis, fields in which NiO is gaining increasing attention recently. Furthermore, the advent of modern NiO-based devices can take advantage of a deeper knowledge of the doping process in NiO, and the fabrication of p-n heterojunctions. By controlling experimental conditions such as dopant concentration, reaction time, temperature or pH, NiO morphology and doping mechanisms can be modulated. In this work, undoped and Sn doped nanoparticles and NiO/SnO2 nanostructures with high surface areas were obtained as a result of Sn incorporation. We demonstrate that Sn incorporation leads to the formation of nanosticks morphology, not previously observed for undoped NiO, promoting p-n heterostructures. Consequently, a surface area value around 340 m2/g was obtained for NiO nanoparticles with 4.7 at.% of Sn, which is nearly nine times higher than that of undoped NiO. The presence of Sn with different oxidation states and variable Ni3+/Ni2+ ratio as a function of the Sn content were also verified by XPS, suggesting a combination of two charge compensation mechanisms (electronic and ionic) for the substitution of Ni2+ by Sn4+. These results make Sn doped NiO nanostructures a potential candidate for a high number of technological applications, in which implementations can be achieved in the form of NiO–SnO2 p-n heterostructures.
机译:具有高表面积的纳米结构是最具挑战性的任务之一,因为该度量通常在技术应用中发挥关键作用,例如储能,气体传感或光催化,其中NIO最近在增加越来越长的关注。此外,现代基于NIO的设备的出现可以利用对NIO中的掺杂过程的更深入了解,以及P-N异质结的制造。通过控制诸如掺杂剂浓度,反应时间,温度或pH的实验条件,可以调节NiO形态和掺杂机制。在该作品中,由于Sn掺入,获得未掺杂的和Sn掺杂的纳米颗粒和具有高表面积的NiO / SnO2纳米结构。我们证明SN掺入导致形成纳米克的形态,以前未观察到未掺杂的NIO,促进P-N异质结构。因此,对于NiO纳米颗粒,对于4.7×0.7%,得到340m 2 / g的表面积值。Sn的%近九倍高于未掺杂的NiO。通过XPS还验证了作为SN含量的不同氧化态和可变Ni3 + / Ni2 +比的Sn的存在,表明通过SN4 +取代Ni2 +的两个电荷补偿机制(电子和离子)的组合。这些结果使Sn掺杂的NiO纳米结构成为大量技术应用的潜在候选者,其中可以以NiO-SnO2 P-N异质结构的形式实现实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号