首页> 美国卫生研究院文献>Nanomaterials >Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone
【2h】

Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone

机译:高性能微孔纳米复合材料的电导电性能由石墨烯纳米片填充的聚砜制成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graphene nanoplatelet (GnP)-filled polysulfone (PSU) cellular nanocomposites, prepared by two different methods—namely, water vapor-induced phase separation (WVIPS) and supercritical CO2 dissolution (scCO2) foaming—were produced with a range of densities from 0.4 to 0.6 g/cm3 and characterized in terms of their structure and electrical conduction behavior. The GnP content was varied from 0 to 10 wt%. The electrical conductivity values were increased with the amount of GnP for the three different studied foam series. The highest values were found for the microcellular nanocomposites prepared by the WVIPS method, reaching as high as 8.17 × 10−2 S/m for 10 wt% GnP. The variation trend of the electrical conductivity for each series was analyzed by applying both the percolation and the tunneling models. Comparatively, the tunneling model showed a better fitting in the prediction of the electrical conductivity. The preparation technique of the cellular nanocomposite affected the resultant cellular structure of the nanocomposite and, as a result, the porosity or gas volume fraction (Vg). A higher porosity resulted in a higher electrical conductivity, with the lightest foams being prepared by the WVIPS method, showing electrical conductivities two orders of magnitude higher than the equivalent foams prepared by the scCO2 dissolution technique.
机译:通过两种不同的方法制备的石墨烯纳米孔(GNP)填充聚砜(PSU)细胞纳米复合材料 - 即水蒸气诱导的相分离(WVIPS)和超临界CO2溶解(SCCO2)发泡 - 用一定的密度为0.4至0.6g / cm3,其特征在于它们的结构和导电行为。 GNP含量从0到10wt%变化。电导率值随着三种不同研究的泡沫系列的GNP量增加。发现了通过WVIPS方法制备的微孔纳米复合材料的最高值,达到10wt%GNP的高达8.17×10-2 s / m。通过施加渗透和隧道模型来分析每个系列的电导率的变化趋势。相比之下,隧道模型在预测导电性时显示出更好的拟合。细胞纳米复合材料的制备技术影响了纳米复合材料的所得细胞结构,结果,孔隙率或气体体积级分(Vg)。较高的孔隙率导致导电率较高,具有通过WVIPS方法制备的最轻的泡沫,显示电导率高于通过SCCO2溶解技术制备的等效泡沫的两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号