首页> 美国卫生研究院文献>Micromachines >Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces
【2h】

Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces

机译:各种力影响下气态微通道中纳米粒子沉积的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanoparticle deposition in microchannel devices inducing contaminant clogging is a serious barrier to the application of micro-electro-mechanical systems (MEMS). For micro-scale gas flow fields with a high Knudsen number (Kn) in the microchannel, gas rarefaction and velocity slip cannot be ignored. Furthermore, the mechanism of nanoparticle transport and deposition in the microchannel is extremely complex. In this study, the compressible gas model and a second-order slip boundary condition have been applied to the Burnett equations to solve the flow field issue in a microchannel. Drag, Brownian, and thermophoretic forces are concerned in the motion equations of particles. A series of numerical simulations for various particle sizes, flow rates, and temperature gradients have been performed. Some important features such as reasons, efficiencies, and locations of particle deposition have been explored. The results indicate that the particle deposition efficiency varies more or less under the actions of forces such as Brownian force, thermophoretic force, and drag force. Nevertheless, different forces lead to different particle motions and deposition processes. Brownian or thermophoretic force causes particles to move closer to the wall or further away from it. The drag force influence of slip boundary conditions and gas rarefaction changes the particles’ residential time in the channel. In order to find a way to decrease particle deposition on the microchannel surface, the deposition locations of different sizes of particles have been analyzed in detail under the action of thermophoretic force.
机译:诱导污染物堵塞的微通道装置中的纳米粒子沉积是应用微机电系统(MEMS)的严重屏障。对于微通道中具有高Chaudsen号(KN)的微刻度气体流场,气体稀疏和速度滑动不能忽略。此外,微通道中纳米粒子输送和沉积的机制非常复杂。在该研究中,可压缩气体模型和二阶滑动边界条件已经应用于伯爵特方程,以解决微通道中的流场问题。阻力,布朗和硫化力涉及颗粒的运动方程。已经进行了各种粒度,流速和温度梯度的一系列数值模拟。已经探讨了一些重要的特征,例如粒子沉积的原因,效率和位置。结果表明,粒子沉积效率在诸如褐色力,硫化力和拖曳力的力的作用下或多或少地变化或多或少。然而,不同的力导致不同的颗粒运动和沉积过程。布朗或嗜热力导致粒子靠近墙壁或远离其移动。滑动边界条件和气体稀疏的阻力影响会改变通道中的粒子的住宅时间。为了能够在微通道表面上降低粒子沉积的方法,在致硫化力的作用下详细分析了不同尺寸的颗粒的沉积位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号