首页> 美国卫生研究院文献>Materials >Control of Machining of Axisymmetric Low-Rigidity Parts
【2h】

Control of Machining of Axisymmetric Low-Rigidity Parts

机译:控制轴对称低刚性部件的加工

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The specific character of the process of machining of axisymmetric low-rigidity parts makes it difficult to obtain finished products with a required accuracy of shape and dimensions and surface quality. The methods traditionally used to achieve accuracy in the machining of low-rigidity shafts considerably reduce the efficiency of the process, fail to meet modern automation requirements, and are uneconomical and not very productive, which means new methods for controlling the machining of low-rigidity shafts need to be looked for. This article presents a structural and a calculation scheme of a machining system for the turning of low-rigidity parts and a control model based on the second-order Lagrange equation. The first section of this paper presents qualitative relationships among variables in the proposed technological system for machining axisymmetric low-rigidity parts. Moreover, schematic of the machining system for the processing of such parts as well as equations describing the energy state of the machining system is presented. Next, mathematical model of optimal system control during the machining process, which permits to control a system under specific conditions and obtains a higher shape accuracy were introduced. The key stage of the verification process concerns the numerical validation of proposed solutions. Experimental studies confirm that the utilization of the proposed mathematical models describe the properties of the original object with sufficient accuracy and allow to obtain a higher machined shaft shape accuracy.
机译:轴对称低刚性部件加工过程的具体特征使得难以获得所需的形状和尺寸和表面质量的精度。传统上用于在低刚性轴加工中实现精度的方法显着降低了该过程的效率,不能满足现代的自动化要求,并且是不经济的,而不是非常高效,这意味着控制低刚性加工的新方法需要寻找轴。本文介绍了用于基于二阶拉格朗日方程的低刚度部件和控制模型的加工系统的结构和计算方案。本文的第一部分在加工轴对称低刚性部件的建议技术系统中存在定性关系。此外,介绍了用于处理这些部件的加工系统的示意性以及描述加工系统的能量状态的等式。接下来,介绍了加工过程中最优系统控制的数学模型,允许在特定条件下控制系统并获得更高的形状精度。验证过程的关键阶段涉及所提出的解决方案的数值验证。实验研究证实,所提出的数学模型的利用描述了原始物体的特性,具有足够的精度,并允许获得更高的加工轴形状精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号