首页> 美国卫生研究院文献>Journal of Animal Science >Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction
【2h】

Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction

机译:使用算法在单步基因组最佳线性无偏见预测中经过验证和年轻算法的基因组预测的核心预测变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single-step genomic best linear unbiased prediction with the Algorithm for Proven and Young (APY) is a popular method for large-scale genomic evaluations. With the APY algorithm, animals are designated as core or noncore, and the computing resources to create the inverse of the genomic relationship matrix (GRM) are reduced by inverting only a portion of that matrix for core animals. However, using different core sets of the same size causes fluctuations in genomic estimated breeding values (GEBVs) up to one additive standard deviation without affecting prediction accuracy. About 2% of the variation in the GRM is noise. In the recursion formula for APY, the error term modeling the noise is different for every set of core animals, creating changes in breeding values. While average changes are small, and correlations between breeding values estimated with different core animals are close to 1.0, based on the normal distribution theory, outliers can be several times bigger than the average. Tests included commercial datasets from beef and dairy cattle and from pigs. Beyond a certain number of core animals, the prediction accuracy did not improve, but fluctuations decreased with more animals. Fluctuations were much smaller than the possible changes based on prediction error variance. GEBVs change over time even for animals with no new data as genomic relationships ties all the genotyped animals, causing reranking of top animals. In contrast, changes in nongenomic models without new data are small. Also, GEBV can change due to details in the model, such as redefinition of contemporary groups or unknown parent groups. In particular, increasing the fraction of blending of the GRM with a pedigree relationship matrix from 5% to 20% caused changes in GEBV up to 0.45 SD, with a correlation of GEBV > 0.99. Fluctuations in genomic predictions are part of genomic evaluation models and are also present without the APY algorithm when genomic evaluations are computed with updated data. The best approach to reduce the impact of fluctuations in genomic evaluations is to make selection decisions not on individual animals with limited individual accuracy but on groups of animals with high average accuracy.
机译:单步基因组最佳线性无偏析与经过验证和年轻(APY)算法的算法是大规模基因组评估的流行方法。利用APY算法,通过将仅逆转该矩阵的一部分用于核心动物,将动物指定为核心或非核心,并且通过反转该矩阵的一部分来减少基因组关系矩阵(GRM)的逆。然而,使用相同尺寸的不同核心组导致基因组估计的育种值(GEBV)的波动直至一个添加剂标准偏差,而不会影响预测精度。大约2%的GRM的变化是噪音。在剪辑的递归公式中,对于每组核心动物来说,噪声模拟噪声的误差术语是不同的,从而产生繁殖值的变化。虽然平均变化很小,并且基于正常分布理论,估计不同核心动物的育种值之间的相关性接近1.0,但异常值可能比平均值大的几倍。测试包括来自牛肉和奶牛和猪的商业数据集。除了一定数量的核心动物之外,预测精度没有改善,但是波动随着更多的动物而减少。波动远小于基于预测误差方差的可能变化。即使对于没有新数据的动物而随着基因组关系,所有基因分型动物的动物即使对于没有新数据的动物,Gebv也会随着时间的推移而变化,导致顶部动物的重新划分。相比之下,没有新数据的非胚组模型的变化很小。此外,GEBV可能因模型中的细节而改变,例如当代组或未知父母组的重新定义。特别地,将GRM的混合的分数增加到血统关系矩阵的5%至20%引起GEBV的变化,高达0.45SD,GEBV> 0.99的相关性。基因组预测中的波动是基因组评估模型的一部分,并且当使用更新数据计算基因组评估时,也存在于没有APY算法的情况下存在。减少基因组评估中波动影响的最佳方法是使不受单个精度有限的个体动物的选择决策,而是对具有高平均精度的动物组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号