首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >A novel and effective method for validation and measurement of output factors for Leksell Gamma Knife® Icon™ using TRS 483 protocol
【2h】

A novel and effective method for validation and measurement of output factors for Leksell Gamma Knife® Icon™ using TRS 483 protocol

机译:使用TRS 483协议验证和测量LEKSELL Gamma刀具仪器™™输出因子的新颖有效方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this work was to identify the exact location of the effective point of measurement (EPM) of four different active detectors to compare the relative collimator output factors (ROF) of Leksell Gamma Knife (LGK) according to IAEA TRS‐483 recommendations. ROF was measured at the center of the spherical LGK‐Solid Water (LGK‐SW) Phantom for three (4‐, 8‐, and 16‐mm in diameter) collimators using four (PTW‐TN60008, PTW‐TN60016, PTW‐TN60017, and PTW‐60019 diode/diamond) detectors. Since diode detectors have a much smaller sensitive volume than the PTW‐31010 ion chamber used for reference dosimetry, its EPM might not be at the center of the phantom, or (100, 100, 100) of the Leksell Coordinate System, particularly in the z‐direction. Hence for each diode detector, a CBCT image was acquired after it was inserted into the phantom, from which the z‐Leksell coordinate of EPM was determined. Relative collimator output factors was then measured by focusing GK beams on the determined EPM of each diode. Measured ROFs were compared with the vendor‐provided values in GK treatment planning system. For validation, a plan was generated to measure the output of 4‐mm collimator for PTW‐TN60017 at various couch locations along the z‐axis. For PTW‐TN60008, the percentage variations were 0.6 ± 0.4%, and −0.8 ± 0.2% for 4 and 8‐mm collimators, respectively. For PTW‐TN60016, the percentage variations were 0.8 ± 0.0%, and 0.2 ± 0.1%, respectively. The percentage variations were −3.3 ± 0.0% and −0.9 ± 0.1%, respectively, for PTW‐TN60017, and −0.5 ± 0.0% and −0.8 ± 0.2%, respectively, for PTW‐TN60019. Center of the measured profile for PTW‐TN60017 was only 0.1 mm different from that identified using the CBCT. In conclusion, we have developed a simple and effective method to determine the EPMs of diode detectors when inserted into the existing LGK‐SW phantom. With the acquired positional information and using TRS‐483 protocol, good agreements were obtained between the measured ROFs and manufacturer recommended values.
机译:这项工作的目的是识别四种不同主动探测器的有效测量点(EPM)的确切位置,以根据IAEA TRS-483建议比较Leksell Gamma刀(LGK)的相对准直器输出因子(ROF)。使用四(PTW-TN60008,PTW-TN60016,PTW-TN60017,在球形LGK - 固体水(LGK-SW)模拟器的中心测量ROF在球形LGK - 固体水(LGK-和16毫米)的幽灵的中心。和PTW-60019二极管/钻石)探测器。由于二极管检测器具有比用于参考剂量测定法的PTW-31010离子室更小的敏感体积,因此其EPM可能不在幻象的中心,或(100,100,100)的leksell坐标系,特别是在Z方向。因此,对于每个二极管检测器,在将CBCT图像插入到幻像之后,确定EPM的Z-Leksell坐标。然后通过将GK光束聚焦在每个二极管的确定的EPM上来测量相对准直器输出因子。将测量的ROF与GK治疗计划系统中的供应商提供的值进行比较。为了验证,生成计划以测量沿Z轴的各种沙发位置的PTW-TN60017的4-mm准直器的输出。对于PTW-TN60008,对于4和8毫米准直器,分别为0.6±0.4%,百分比变化为-0.8±0.2%。对于PTW-TN60016,百分比变化分别为0.8±0.0%,分别为0.2±0.1%。对于PTW-TN60017,分别为-3.3±0.0%和-0.9±0.1%,分别为-3.3±0.0%,分别为-0.5±0.0%和-0.8±0.2%,用于PTW-TN60019。 PTW-TN60017的测量轮廓的中心仅与使用CBCT识别的0.1毫米不同。总之,我们开发了一种简单有效的方法,可以在插入现有LGK-SW幻像时确定二极管检测器的EPM。通过获取的位置信息和使用TRS-483协议,在测量的ROF和制造商推荐值之间获得了良好的协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号