首页> 美国卫生研究院文献>Advanced Science >A Three in One Strategy to Achieve Zirconium Doping Boron Doping and Interfacial Coating for Stable LiNi
【2h】

A Three in One Strategy to Achieve Zirconium Doping Boron Doping and Interfacial Coating for Stable LiNi

机译:一项策略中的三种策略实现锆掺杂硼掺杂和稳定林的界面涂层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

LiNi0.8Co0.1Mn0.1O2 cathodes suffer from severe bulk structural and interfacial degradation during battery operation. To address these issues, a three in one strategy using ZrB2 as the dopant is proposed for constructing a stable Ni‐rich cathode. In this strategy, Zr and B are doped into the bulk of LiNi0.8Co0.1Mn0.1O2, respectively, which is beneficial to stabilize the crystal structure and mitigate the microcracks. Meanwhile, during the high‐temperature calcination, some of the remaining Zr at the surface combined with the surface lithium source to form lithium zirconium coatings, which physically protect the surface and suppress the interfacial phase transition upon cycling. Thus, the 0.2 mol% ZrB2‐LiNi0.8Co0.1Mn0.1O2 cathode delivers a discharge capacity of 183.1 mAh g−1 after 100 cycles at 50 °C (1C, 3.0–4.3 V), with an outstanding capacity retention of 88.1%. The cycling stability improvement is more obvious when the cut‐off voltage increased to 4.4 V. Density functional theory confirms that the superior structural stability and excellent thermal stability are attributed to the higher exchange energy of Li/Ni exchange and the higher formation energy of oxygen vacancies by ZrB2 doping. The present work offers a three in one strategy to simultaneously stabilize the crystal structure and surface for the Ni‐rich cathode via a facile preparation process.
机译:LINI0.8CO0.1MN0.1012阴极在电池操作期间遭受严重的散装结构和界面劣化。为了解决这些问题,提出了一种使用ZRB2作为掺杂剂的一个策略中的三个,用于构建富稳定的Ni阴极。在该策略中,Zr和B分别掺杂到大部分LINI0.8CO0.1MN0.1O2中,这有利于稳定晶体结构并减轻微裂纹。同时,在高温煅烧期间,表面的一些剩余的Zr与表面锂源组合形成锂锆涂层,其物理保护表面并抑制循环时抑制界面相转变。因此,在50℃(1c,3.0-4.3V)的100次循环后,0.2mol%Zrb2-LiNi0.8Co0.1Mn0.1O2阴极在100℃(1C,3.0-4.3V)下,在100℃(1C,3.0-4.3V)之后,提供183.1mAhg-1的放电容量,其容量保留为88.1% 。当截止电压增加到4.4V时,循环稳定性提高更为明显。密度函数理论证实,卓越的结构稳定性和优异的热稳定性归因于Li / Ni交换的更高的交换能量和氧气的较高形成能量。 ZRB2掺杂的空缺。本工作提供了一种在一种策略中,通过容易制备方法同时稳定富含Ni的阴极的晶体结构和表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号