首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials
【2h】

Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials

机译:基因组预测增强了多环境试验的稀疏测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

“Sparse testing” refers to reduced multi-environment breeding trials in which not all genotypes of interest are grown in each environment. Using genomic-enabled prediction and a model embracing genotype × environment interaction (GE), the non-observed genotype-in-environment combinations can be predicted. Consequently, the overall costs can be reduced and the testing capacities can be increased. The accuracy of predicting the unobserved data depends on different factors including (1) how many genotypes overlap between environments, (2) in how many environments each genotype is grown, and (3) which prediction method is used. In this research, we studied the predictive ability obtained when using a fixed number of plots and different sparse testing designs. The considered designs included the extreme cases of (1) no overlap of genotypes between environments, and (2) complete overlap of the genotypes between environments. In the latter case, the prediction set fully consists of genotypes that have not been tested at all. Moreover, we gradually go from one extreme to the other considering (3) intermediates between the two previous cases with varying numbers of different or non-overlapping (NO)/overlapping (O) genotypes. The empirical study is built upon two different maize hybrid data sets consisting of different genotypes crossed to two different testers (T1 and T2) and each data set was analyzed separately. For each set, phenotypic records on yield from three different environments are available. Three different prediction models were implemented, two main effects models ( and ), and a model ( including GE. The results showed that the genome-based model including GE ( ) captured more phenotypic variation than the models that did not include this component. Also, provided higher prediction accuracy than models and for the different allocation scenarios. Reducing the size of the calibration sets decreased the prediction accuracy under all allocation designs with being the less affected model; however, using the genome-enabled models ( , and ) the predictive ability is recovered when more genotypes are tested across environments. Our results indicate that a substantial part of the testing resources can be saved when using genome-based models including GE for optimizing sparse testing designs.
机译:“稀疏测试”是指减少多环境育种试验,其中没有任何兴趣基因型在每个环境中生长。使用支持基因组的预测和模型拥抱基因型×环境相互作用(GE),可以预测未观察到的基因型内组合。因此,可以减少总成本并且可以增加测试能力。预测未观察到的数据的准确性取决于不同的因素,包括(1)在环境之间的环境之间重叠有多少基因型,每种基因型在每个基因型中生长的情况,并且使用哪种预测方法。在本研究中,我们研究了使用固定数量的图和不同稀疏测试设计时获得的预测能力。所考虑的设计包括(1)的极端情况,环境之间的基因型重叠,(2)在环境之间的基因型中完全重叠。在后一种情况下,预测集完全由尚未测试的基因型组成。此外,我们逐渐从一个极端到另一个极端考虑(3)两个以前的病例之间的中间体,不同数量不同或非重叠(NO)/重叠(O)基因型。实证研究基于两种不同的玉米混合数据集,其由交叉于两个不同的测试仪(T1和T2)的不同基因型组成,并且分别分析了每个数据集。对于每种组,可以获得来自三种不同环境的产量的表型记录。实现了三种不同的预测模型,两个主要效果模型(和)和模型(包括GE。结果表明,包括GE()的基于基因组的模型比不包括该组件的模型更具表型变化。也,提供比模型更高的预测精度和不同的分配方案。减小校准组的大小降低了所有分配设计下的预测精度,其中包括较小的模型;但是,使用启用基因组的型号(和)预测性当在环境中测试更多基因型时,能够恢复。我们的结果表明,在使用基于基于基因组的模型时,可以节省大部分测试资源,以优化稀疏测试设计。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号