首页> 美国卫生研究院文献>Materials >Microflow Nanoprecipitation of Positively Charged Gastroresistant Polymer Nanoparticles of Eudragit® RS100: A Study of Fluid Dynamics and Chemical Parameters
【2h】

Microflow Nanoprecipitation of Positively Charged Gastroresistant Polymer Nanoparticles of Eudragit® RS100: A Study of Fluid Dynamics and Chemical Parameters

机译:eudragit®RS100带正电荷的胃肠聚合物纳米粒子的微射线纳米尺寸:流体动力学和化学参数的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of the present work was to produce gastroresistant Eudragit RS100 nanoparticles by a reproducible synthesis approach that ensured mono-disperse nanoparticles under the size of 100 nm. Batch and micromixing nanoprecipitation approaches were selected to produce the demanded nanoparticles, identifying the critical parameters affecting the synthesis process. To shed some light on the formulation of the targeted nanoparticles, the effects of particle size and homogeneity of fluid dynamics, and physicochemical parameters such as polymer concentration, type of solvent, ratio of solvent to antisolvent, and total flow rate were studied. The physicochemical characteristics of resulting nanoparticles were studied applying dynamic light scattering (DLS) particle size analysis and electron microscopy imaging. Nanoparticles produced using a micromixer demonstrated a narrower and more homogenous distribution than the ones obtained under similar conditions in conventional batch reactors. Besides, fluid dynamics ensured that the best mixing conditions were achieved at the highest flow rate. It was concluded that nucleation and growth events must also be considered to avoid uncontrolled nanoparticle growth and evolution at the collection vial. Further, rifampicin-encapsulated nanoparticles were prepared using both approaches, demonstrating that the micromixing-assisted approach provided an excellent control of the particle size and polydispersity index. Not only the micromixing-assisted nanoprecipitation promoted a remarkable control in the nanoparticle formulation, but also it enhanced drug encapsulation efficiency and loading, as well as productivity. To the best of our knowledge, this was the very first time that drug-loaded Eudragit RS100 nanoparticles (NPs) were produced in a continuous fashion under 100 nm (16.5 ± 4.3 nm) using microreactor technology. Furthermore, we performed a detailed analysis of the influence of various fluid dynamics and physicochemical parameters on the size and uniformity of the resulting nanoparticles. According to these findings, the proposed methodology can be a useful approach to synthesize a myriad of nanoparticles of alternative polymers.
机译:本作工作的目的是通过可重复的合成方法生产胃肠型Eudragit RS100纳米颗粒,其确保在100nm的大小下的单分散纳米颗粒。选择分批和微混合纳米尺寸方法以产生所需的纳米颗粒,鉴定影响合成过程的关键参数。为了在靶向纳米颗粒的配方上揭示一些光,研究了流体动力学的粒度和均匀性的影响,以及诸如聚合物浓度,溶剂类型,溶剂的比例,与抗溶剂的溶剂的均匀性,以及总流速的效果。研究了所得纳米颗粒的物理化学特性,施加动态光散射(DLS)粒度分析和电子显微镜成像。使用微混合器制备的纳米颗粒比在常规间歇反应器中类似条件下获得的纳米颗粒表现出较窄和更均匀的分布。此外,流体动力学确保以最高流速实现最佳混合条件。结论是,还必须考虑成核和生长事件以避免收集小瓶中不受控制的纳米颗粒生长和演化。此外,使用两种方法制备利福平封装的纳米颗粒,证明了微混凝辅助方法提供了对粒度和多分散指数的优异控制。不仅微旋光辅助纳米尺寸促进了纳米颗粒制剂的显着控制,而且还增强了药物包封效率和负载,以及生产率。据我们所知,这是第一次使用MicroreActor技术在100nm(16.5±4.3nm)下以100nm(16.5±4.3nm)的连续方式生产的载药的Eudragit RS100纳米颗粒(NPS)。此外,我们对各种流体动力学和物理化学参数对所得纳米颗粒的尺寸和均匀性进行详细分析。根据这些发现,所提出的方法可以是合成替代聚合物的无数纳米颗粒的有用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号