首页> 美国卫生研究院文献>Materials >Cellulose-Multiwall Carbon Nanotube Fiber Actuator Behavior in Aqueous and Organic Electrolyte
【2h】

Cellulose-Multiwall Carbon Nanotube Fiber Actuator Behavior in Aqueous and Organic Electrolyte

机译:纤维素 - 多壁碳纳米管纤维致动器行为水性和有机电解质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As both consumers and producers are shifting from fossil-derived materials to other, more sustainable approaches, there is a growing interest in bio-origin and biodegradable polymers. In search of bio-degradable electro-mechanically active materials, cellulose-multi wall carbon nanotube (Cell-CNT) composites are a focus for the development of actuators and sensors. In the current study, our aim was to fabricate Cell-CNT composite fibers and study their electro-mechanical response as linear actuators in aqueous and propylene carbonate-based electrolyte solutions. While the response was (expectedly) strongly solvent dependent, the different solvents also revealed unexpected phenomena. Cell-CNT fibers in propylene carbonate revealed a strong back-relaxation process at low frequencies, and also a frequency dependent response direction change (change of actuation direction). Cell-CNT fibers operated in aqueous electrolyte showed response typical to electrochemical capacitors including expansion at discharging with controllable actuation dependence on charge density. While the response was similarly stable in both electrolyte solution systems, the aqueous electrolytes were clearly favorable for Cell-CNT with 3.4 times higher conductivities, 4.3 times higher charge densities and 11 times higher strain.
机译:由于消费者和生产者都从化石衍生材料转移到其他,更可持续的方法,对生物来源和可生物降解的聚合物的兴趣日益增长。寻找生物可降解的电动机械活性材料,纤维素 - 多壁碳纳米管(Cell-CNT)复合材料是致动器和传感器的开发的焦点。在目前的研究中,我们的目的是制造细胞-CNT复合纤维,并在基于水性和丙烯酯基电解质溶液中将其电力响应作为线性致动器。虽然响应是(预期的)强烈溶剂依赖,但不同的溶剂也揭示了意外的现象。碳酸亚丙酯中的细胞-CNT纤维在低频下显示出强的后弛豫过程,以及频率相关的响应方向变化(致动方向的变化)。在含水电解质中操作的细胞-CNT纤维显示出典型的电化学电容器,包括在放电时的膨胀,其可控致动依赖性对电荷密度。虽然反应在电解质溶液系统中同样稳定,但水性电解质对于细胞-CNT具有3.4倍较高的电导率,较高的电荷密度为4.3倍,菌株高出11倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号