首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Detecting Matching Blunders of Multi-Source Remote Sensing Images via Graph Theory
【2h】

Detecting Matching Blunders of Multi-Source Remote Sensing Images via Graph Theory

机译:通过图论检测多源遥感图像的匹配漏洞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large radiometric and geometric distortion in multi-source images leads to fewer matching points with high matching blunder ratios, and global geometric relationship models between multi-sensor images are inexplicit. Thus, traditional matching blunder detection methods cannot work effectively. To address this problem, we propose two matching blunder detection methods based on graph theory. The proposed methods can build statistically significant clusters in the case of few matching points with high matching blunder ratios, and use local geometric similarity constraints to detect matching blunders when the global geometric relationship is not explicit. The first method (named the complete graph-based method) uses clusters constructed by matched triangles in complete graphs to encode the local geometric similarity of images, and it can detect matching blunders effectively without considering the global geometric relationship. The second method uses the triangular irregular network (TIN) graph to approximate a complete graph to reduce to computational complexity of the first method. We name this the TIN graph-based method. Experiments show that the two graph-based methods outperform the classical random sample consensus (RANSAC)-based method in recognition rate, false rate, number of remaining matching point pairs, dispersion, positional accuracy in simulated and real data (image pairs from Gaofen1, near infrared ray of Gaofen1, Gaofen2, panchromatic Landsat, Ziyuan3, Jilin1and unmanned aerial vehicle). Notably, in most cases, the mean false rates of RANSAC, the complete graph-based method and the TIN graph-based method in simulated data experiments are 0.50, 0.26 and 0.14, respectively. In addition, the mean positional accuracy (RMSE measured in units of pixels) of the three methods is 2.6, 1.4 and 1.5 in real data experiments, respectively. Furthermore, when matching blunder ratio is no higher than 50%, the computation time of the TIN graph-based method is nearly equal to that of the RANSAC-based method, and roughly 2 to 40 times less than that of the complete graph-based method.
机译:多源图像中的大辐射和几何失真导致具有高匹配误差比率的匹配点的较少,并且多传感器图像之间的全局几何关系模型是不可分割的。因此,传统的匹配误差检测方法无法有效地工作。为了解决这个问题,我们提出了基于图论的两个匹配的误差检测方法。所提出的方法可以在很少匹配点的情况下构建统计学上的显着簇,并且在全球几何关系不明确时使用局部几何相似度约束来检测匹配的漏洞。第一种方法(命名为基于图形的方法)使用匹配的三角形构造的群集在完整的图表中编码图像的局部几何相似度,并且可以在不考虑全局几何关系的情况下有效地检测匹配的漏洞。第二种方法使用三角形不规则网络(TIN)图来近似完整图,以减少第一方法的计算复杂性。我们命名为基于TIN图的方法。实验表明,基于图形的方法优于识别率,假速率,剩余匹配点对,色散,定位准确性的识别率,假速率,定位准确性的校正和实际数据的数量(来自GaoFen1的图像对的常规随机样本共识(RANSAC)的方法。靠近高芬射线的高芬射线1,高芬2,全形土地,紫源3,吉林1和无人驾驶飞行器)。值得注意的是,在大多数情况下,在模拟数据实验中,RANSAC的平均假速率,基于图形的方法和基于锡图的方法分别为0.50,0.26和0.14。另外,在真实数据实验中,三种方法的平均位置精度(以像素为单位测量的RMSE)分别为2.6,1.4和1.5。此外,当匹配的闪烁比率不高于50%时,基于TIN图的方法的计算时间几乎等于基于RANSAC的方法的计算时间,大约是基于图形的基于RANSAC的方法的计算时间。方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号