首页> 美国卫生研究院文献>Materials Today Bio >Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model
【2h】

Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model

机译:反复暴露于气溶胶​​化的氧化石墨烯可在三维人体气道模型中介导自噬抑制和炎症

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hazard evaluation of engineered nanomaterials (ENMs) using real-world exposure scenario could provide better interpretation of toxicity end points for their use in the assessment of human safety and for their implications in many fields such as toxicology, nanomedicine, and so forth. However, most of the current studies, both and , do not reflect realistic conditions of human exposure to ENMs, due to the high doses implemented. Moreover, the use of cellular models cultured under submerged conditions limits their physiological relevance for lung exposure, where cells are primarily cultured at the air-liquid interface. Addressing such issues is even more challenging for emergent nanomaterials, such as graphene oxide (GO), for which little or no information on exposure is available. In this work, we studied the impact of repeated exposure of GO on a three-dimensional (3D) reconstruct of human bronchial tissue, using a nebulizer system focusing on short-term effects. The selected doses (reaching a maximum of ca. 20 ​μg/cm for a period of 4 weeks of exposure) were extrapolated from alveolar mass deposition values of a broader class of carbon-based nanomaterials, reflecting a full working lifetime of human exposure. Experimental results did not show strong toxic effects of GO in terms of viability and integrity of the lung tissue. However, since 2 weeks of treatment, repeated GO exposure elicited a proinflammatory response, moderate barrier impairment, and autophagosome accumulation, a process resulting from blockade of autophagy flux. Interestingly, the 3D airway model could recover such an effect by restoring autophagy flux at longer exposure (30 days). These findings indicate that prolonged exposure to GO produces a time window (during the 30 days of treatment set for this study) for which GO-mediated autophagy inhibition along with inflammation may potentially increase the susceptibility of exposed humans to pulmonary infections and/or lung diseases. This study also highlights the importance of using physiologically relevant in vitro models and doses derived from real-world exposure to obtain focused data for the assessment of human safety.
机译:使用现实世界中的暴露场景对工程纳米材料(ENM)进行危害评估,可以更好地解释毒性终点,以将其用于人体安全评估以及它们在毒理学,纳米医学等许多领域的意义。但是,由于实施了高剂量,目前的大多数研究(和)都没有反映人类暴露于ENM的现实条件。此外,在淹没条件下培养的细胞模型的使用限制了它们对肺暴露的生理相关性,其中细胞主要在气液界面培养。对于新兴的纳米材料(例如氧化石墨烯(GO))而言,解决此类问题甚至更具挑战性,对于这类材料而言,很少或根本没有关于曝光的信息。在这项工作中,我们研究了GO的反复暴露对人支气管组织的三维(3D)重建的影响,使用了关注短期效应的雾化器系统。从更广泛的碳基纳米材料类别的肺泡质量沉积值推断出所选剂量(在暴露的4周内达到最大约20μg/ cm),这反映了人类暴露的整个工作寿命。实验结果表明,就肺组织的活力和完整性而言,GO并未显示出强烈的毒性作用。然而,自治疗2周以来,重复的GO暴露引起促炎反应,中度屏障障碍和自噬小体积聚,这是自噬通量受阻的过程。有趣的是,3D气道模型可以通过在更长的暴露时间(30天)恢复自噬通量来恢复这种效果。这些发现表明,长时间接触GO会产生一个时间窗(在本研究设定的30天治疗期间),GO介导的自噬抑制以及炎症可能会增加暴露于人类对肺部感染和/或肺部疾病的敏感性。 。这项研究还强调了使用生理相关的体外模型和从真实世界接触中获得的剂量来获取用于评估人类安全性的重点数据的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号