首页> 美国卫生研究院文献>Engineering in Life Sciences >Development and performance of a 3D‐printable poly(ethylene glycol) diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications
【2h】

Development and performance of a 3D‐printable poly(ethylene glycol) diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications

机译:适用于酶截留和长期生物催化应用的可3D打印的聚乙二醇二丙烯酸二乙酯水凝胶的开发和性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Physical entrapment of enzymes within a porous matrix is a fast and gentle process to immobilize biocatalysts to enable their recycling and long‐term use. This study introduces the development of a biocompatible 3D‐printing material suitable for enzyme entrapment, while having good rheological and UV‐hardening properties. Three different viscosity‐enhancing additives have been tested in combination with a poly(ethylene glycol) diacrylate‐based hydrogel system. The addition of polyxanthan or hectorite clay particles results in hydrogels that degrade over hours or days, releasing entrapped compounds. In contrast, the addition of nanometer‐sized silicate particles ensures processability while preventing disintegration of the hydrogel. Lattice structures with a total height of 6 mm consisting of 40 layers were 3D‐printed with all materials and characterized by image analysis. Rheological measurements identified a shear stress window of 200 −1 and 25°C for well‐defined geometries with an extrusion‐based printhead. Enzymes immobilized in these long‐term stable hydrogel structures retained an effective activity of approximately 10% compared to the free enzyme in solution. It could be shown that the reduction of effective activity is not caused by a significant reduction of the intrinsic enzyme activity but by mass transfer limitations within the printed hydrogel structures.
机译:酶在多孔基质中的物理捕获是固定生物催化剂以使其再循环和长期使用的快速而温和的过程。这项研究介绍了一种适用于酶截留的生物相容性3D打印材料的开发,同时具有良好的流变性和紫外线硬化性能。已经测试了三种不同的增粘添加剂与聚(乙二醇)二丙烯酸酯基水凝胶体系的结合。聚黄原胶或锂蒙脱石粘土颗粒的添加导致水凝胶在数小时或数天内降解,从而释放出被包裹的化合物。相比之下,添加纳米级硅酸盐颗粒可确保可加工性,同时防止水凝胶崩解。用所有材料3D打印总高度为6毫米,由40层组成的晶格结构,并通过图像分析对其进行表征。流变学测量确定了200 -1和25°C的剪切应力窗口,对于使用挤出型打印头的明确定义的几何形状。与溶液中的游离酶相比,固定在这些长期稳定的水凝胶结构中的酶具有约10%的有效活性。可以表明,有效活性的降低不是由于固有酶活性的显着降低,而是由于印刷的水凝胶结构内的传质限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号