首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions
【2h】

Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions

机译:通过在相反方向上激发反相瑞利波来测量材料的声学非线性参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The acoustic non-linearity parameter of Rayleigh waves can be used to detect various defects (such as dislocation and micro-cracks) on material surfaces of thick-plate structures; however, it is generally low and likely to be masked by noise. Moreover, conventional methods used with non-linear Rayleigh waves exhibit a low detection efficiency. To tackle these problems, a method of exciting reversed-phase Rayleigh waves in opposite directions is proposed to measure the acoustic non-linearity parameter of materials. For that, two angle beam wedge transducers were placed at the two ends of the upper surface of a specimen to excite two Rayleigh waves of opposite phases, while a normal transducer was installed in the middle of the upper surface to receive them. By taking specimens of 0Cr17Ni4Cu4Nb martensitic stainless steel subjected to fatigue damage as an example, a finite element simulation model was established to test the proposed method of measuring the acoustic non-linearity parameter. The simulation results show that the amplitude of fundamentals is significantly reduced due to offset, while that of second harmonics greatly increases due to superposition because of the opposite phases of the excited signals, and the acoustic non-linearity parameter thus increases. The experimental research on fatigue damage specimens was carried out using this method. The test result was consistent with the simulation result. Thus, the method of exciting reversed-phase Rayleigh waves in opposite directions can remarkably increase the acoustic non-linearity parameter. Additionally, synchronous excitation with double-angle beam wedge transducers can double the detection efficiency.
机译:瑞利波的声学非线性参数可用于检测厚板结构材料表面的各种缺陷(例如位错和微裂纹)。但是,它通常很低,很可能被噪声掩盖。此外,与非线性瑞利波一起使用的常规方法表现出低的检测效率。为了解决这些问题,提出了一种沿相反方向激发反相瑞利波的方法来测量材料的声学非线性参数。为此,将两个角波束楔形换能器放置在样品上表面的两端,以激发两个相反相位的瑞利波,同时在上表面的中部安装一个普通换能器以接收它们。以0Cr17Ni4Cu4Nb马氏体不锈钢遭受疲劳破坏为例,建立了有限元模拟模型,对所提出的声学非线性参数的测量方法进行了测试。仿真结果表明,由于失调,基频的幅值明显减小,而由于激励信号的相反相位,二次谐波的幅值由于叠加而大大增加,从而使声学非线性参数增大。用这种方法进行了疲劳损伤试样的实验研究。测试结果与仿真结果一致。因此,沿相反方向激发反相瑞利波的方法可以显着增加声学非线性参数。此外,使用双角波束楔形换能器进行同步激励可以使检测效率提高一倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号