首页> 美国卫生研究院文献>Nanomaterials >Reveal the Deformation Mechanism of (110) Silicon from Cryogenic Temperature to Elevated Temperature by Molecular Dynamics Simulation
【2h】

Reveal the Deformation Mechanism of (110) Silicon from Cryogenic Temperature to Elevated Temperature by Molecular Dynamics Simulation

机译:通过分子动力学模拟揭示(110)硅从低温到高温的变形机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon undergoes a brittle-to-ductile transition as its characteristic dimension reduces from macroscale to nanoscale. The thorough understanding of the plastic deformation mechanism of silicon at the nanoscale is still challenging, although it is essential for developing Si-based microanoelectromechanical systems (MEMS/NEMS). Given the wide application of silicon in extreme conditions, it is, therefore, highly desirable to reveal the nanomechanical behavior of silicon from cryogenic temperature to elevated temperature. In this paper, large-scale molecular dynamics (MD) simulations were performed to reveal the spherical nanoindentation response and plastic deformation mechanism of (110)Si at the temperature range of 0.5 K to 573 K. Special attention was paid to the effect of temperature. Multiple pop-ins detected in load/pressure-indentation strain curves are impacted by temperature. Four featured structures induced by nanoindentation, including high-pressure phases, extrusion of α-Si, dislocations, and crack, are observed at all temperatures, consistent with experiment results. The detailed structure evolution of silicon was revealed at the atomic scale and its dependence on temperature was analyzed. Furthermore, structure changes were correlated with pop-ins in load/pressure-indentation strain curves. These results may advance our understanding of the mechanical properties of silicon.
机译:随着硅的特征尺寸从宏观尺度减小到纳米尺度,硅经历了从脆性到延性的转变。尽管对于开发基于硅的微/纳米机电系统(MEMS / NEMS)至关重要,但对纳米级硅塑性变形机理的透彻理解仍然具有挑战性。考虑到硅在极端条件下的广泛应用,因此非常需要揭示硅从低温到高温的纳米力学行为。本文进行了大规模的分子动力学(MD)模拟,以揭示(110)Si在0.5 K至573 K的温度范围内的球形纳米压痕响应和塑性变形机制。特别注意温度的影响。在负载/压痕应变曲线中检测到的多个弹跳受温度影响。在所有温度下均观察到由纳米压痕诱导的四个特征结构,包括高压相,α-Si的挤压,位错和裂纹,与实验结果一致。在原子尺度上揭示了硅的详细结构演变,并分析了其对温度的依赖性。此外,结构变化与载荷/压力压痕应变曲线中的弹跳相关。这些结果可以提高我们对硅的机械性能的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号