首页> 美国卫生研究院文献>Micromachines >Standing Air Bubble-Based Micro-Hydraulic Capacitors for Flow Stabilization in Syringe Pump-Driven Systems
【2h】

Standing Air Bubble-Based Micro-Hydraulic Capacitors for Flow Stabilization in Syringe Pump-Driven Systems

机译:用于注射泵驱动系统中稳定流量的基于气泡​​的微型液压电容器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unstable liquid flow in syringe pump-driven systems due to the low-speed vibration of the step motor is commonly observed as an unfavorable phenomenon, especially when the flow rate is relatively small. Upon the design of a convenient and cost-efficient microfluidic standing air bubble system, this paper studies the physical principles behind the flow stabilization phenomenon of the bubble-based hydraulic capacitors. A bubble-based hydraulic capacitor consists of three parts: tunable microfluidic standing air bubbles in specially designed crevices on the fluidic channel wall, a proximal pneumatic channel, and porous barriers between them. Micro-bubbles formed in the crevices during liquid flow and the volume of the bubble can be actively controlled by the pneumatic pressure changing in the proximal channel. When there is a flowrate fluctuation from the upstream, the flexible air-liquid interface would deform under the pressure variation, which is analogous to the capacitive charging/discharging process. The theoretical model based on Euler law and the microfluidic equivalent circuit was developed to understand the multiphysical phenomenon. Experimental data characterize the liquid flow stabilization performance of the flow stabilizer with multiple key parameters, such as the number and the size of microbubbles. The developed bubble-based hydraulic capacitor could minimize the flow pulses from syringe pumping by 75.3%. Furthermore, a portable system is demonstrated and compared with a commercial pressure-driven flow system. This study can enhance the understanding of the bubble-based hydraulic capacitors that would be beneficial in microfluidic systems where the precise and stable liquid flow is required.
机译:通常认为,由于步进电机的低速振动,在注射泵驱动的系统中液体流动不稳定,这是不利的现象,尤其是在流速相对较小时。通过设计一种方便且经济高效的微流体静置气泡系统,本文研究了基于气泡的液压电容器的流量稳定现象背后的物理原理。基于气泡的液压电容器由三部分组成:位于流体通道壁上经过特殊设计的缝隙中的可调微流体固定气泡,近端气动通道以及它们之间的多孔屏障。在液体流动期间在缝隙中形成的微气泡和气泡的体积可以通过近端通道中的气压变化来主动控制。当来自上游的流量波动时,柔性的气液界面将在压力变化下变形,这类似于电容性充电/放电过程。建立了基于欧拉定律和微流等效电路的理论模型,以了解多物理现象。实验数据表征了具有多个关键参数(例如微气泡的数量和大小)的流动稳定剂的液体流动稳定性能。研发的基于气泡​​的液压电容器可以将注射器泵送的流量脉冲最小化75.3%。此外,演示了便携式系统,并将其与商用压力驱动的流量系统进行了比较。这项研究可以增进对基于气泡的液压电容器的理解,这对于需要精确和稳定液体流动的微流体系统将是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号