首页> 美国卫生研究院文献>Micromachines >Efficient Development of Integrated Lab-On-A-Chip Systems Featuring Operational Robustness and Manufacturability
【2h】

Efficient Development of Integrated Lab-On-A-Chip Systems Featuring Operational Robustness and Manufacturability

机译:高效开发具有操作鲁棒性和可制造性的集成芯片实验室系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The majority of commercially oriented microfluidic technologies provide novel point-of-use solutions for laboratory automation with important areas in the context of the life sciences such as health care, biopharma, veterinary medicine and agrifood as well as for monitoring of the environment, infrastructures and industrial processes. Such systems are often composed of a modular setup exhibiting an instrument accommodating rather conventional actuation, detection and control units which interfaces with a fluidically integrated “Lab-on-a-Chip” device handling (bio-)sample(s) and reagents. As the complex network of tiny channels, chambers and surface-functionalised zones can typically not be properly cleaned and regenerated, these microfluidic chips are mostly devised as single-use disposables. The availability of cost-efficient materials and associated structuring, functionalisation and assembly schemes thus represents a key ingredient along the commercialisation pipeline and will be a first focus of this work. Furthermore, and owing to their innate variability, investigations on biosamples mostly require the acquisition of statistically relevant datasets. Consequently, intermediate numbers of consistently performing chips are already needed during application development; to mitigate the potential pitfalls of technology migration and to facilitate regulatory compliance of the end products, manufacture of such pilot series should widely follow larger-scale production schemes. To expedite and de-risk the development of commercially relevant microfluidic systems towards high Technology Readiness Levels (TRLs), we illustrate a streamlined, manufacturing-centric platform approach employing the paradigms of tolerance-forgiving Design-for-Manufacture (DfM) and Readiness for Scale-up (RfS) from prototyping to intermediate pilot series and eventual mass fabrication. Learning from mature industries, we further propose pursuing a platform approach incorporating aspects of standardisation in terms of specification, design rules and testing methods for materials, components, interfaces, and operational procedures; this coherent strategy will foster the emergence of dedicated commercial supply chains and also improve the economic viability of Lab-on-a-Chip systems often targeting smaller niche markets by synergistically bundling technology development.
机译:大多数面向商业的微流体技术为生命科学领域中重要领域的实验室自动化提供了新颖的使用点解决方案,这些领域包括医疗保健,生物制药,兽药和农业食品,以及环境,基础设施和环境的监测。工业过程。这样的系统通常由模块化装置组成,该模块化装置展示了容纳相当常规的致动,检测和控制单元的仪器,该单元与流体集成的“芯片实验室”设备处理(生物)样品和试剂进行接口。由于微小通道,腔室和表面功能化区域的复杂网络通常无法正确清洁和再生,因此这些微流控芯片大多设计为一次性使用。因此,具有成本效益的材料以及相关的结构,功能化和组装方案的可用性代表了商业化流程中的关键要素,并将成为这项工作的首要重点。此外,由于其固有的可变性,对生物样品的研究大多需要获取统计上相关的数据集。因此,在应用程序开发过程中已经需要中等数量的性能稳定的芯片。为了减轻技术迁移的潜在陷阱并促进最终产品的法规遵从性,此类试验系列的制造应广泛遵循大规模生产计划。为了加快和降低与商业相关的微流体系统向高技术准备水平(TRL)的发展的风险,我们说明了一种精简的,以制造为中心的平台方法,该方法采用了宽容的制造设计(DfM)和准备就绪的范式。从原型开发到中试系列直至最终批量制造的放大(RfS)。从成熟行业中吸取教训,我们进一步建议采用一种平台方法,在材料,组件,接口和操作程序的规格,设计规则和测试方法方面,将标准化方面纳入考虑;这种协调一致的策略将促进专用商业供应链的出现,并通过协同捆绑技术开发来提高通常针对较小的细分市场的芯片实验室系统的经济可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号