首页> 美国卫生研究院文献>Micromachines >Application of a Terahertz System Combined with an X-Shaped Metamaterial Microfluidic Cartridge
【2h】

Application of a Terahertz System Combined with an X-Shaped Metamaterial Microfluidic Cartridge

机译:太赫兹系统与X形超材料微流体小柱结合的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Terahertz (THz) radiation has attracted wide attention for its ability to sense molecular structure and chemical matter because of a label-free molecular fingerprint and nondestructive properties. When it comes to molecular recognition with terahertz radiation, our attention goes first towards the absorption spectrum, which is beyond the far infrared region. To enhance the sensitivity for similar species, however, it is necessary to apply an artificially designed metamaterial sensor for detection, which confines an electromagnetic field in an extremely sub-wavelength space and hence receives an electromagnetic response through resonance. Once the resonance is caused through the interaction between the THz radiation and the metamaterial, a minute variation might be observed in the frequency domain. For a geometric structure of a metamaterial, a novel design called an X-shaped plasmonic sensor (XPS) can create a quadrupole resonance and lead to sensitivity greater than in the dipole mode. A microfluidic system is able to consume reagents in small volumes for detection, to diminish noise from the environment, and to concentrate the sample into detection spots. A microfluidic device integrated with an X-shaped plasmonic sensor might thus achieve an effective and highly sensitive detection cartridge. Our tests involved not only measurements of liquid samples, but also the performance of a dry bio-sample coated on an XPS.
机译:太赫兹(THz)辐射由于其无标记的分子指纹和无损的特性而具有感知分子结构和化学物质的能力,因此受到了广泛的关注。当涉及太赫兹辐射的分子识别时,我们的注意力首先转向吸收光谱,该光谱超出了远红外区域。但是,为了提高对相似物种的灵敏度,有必要应用人工设计的超材料传感器进行检测,该传感器将电磁场限制在极短的波长空间内,并因此通过共振接收电磁响应。一旦通过太赫兹辐射与超材料之间的相互作用引起了共振,则可能会在频域中观察到微小的变化。对于超材料的几何结构,一种称为X形等离子体传感器(XPS)的新颖设计可以产生四极共振,并导致灵敏度高于偶极模式。微流体系统能够消耗少量试剂进行检测,减少环境噪声并将样品浓缩到检测点中。与X形等离子体传感器集成在一起的微流控设备因此可以实现有效且高度灵敏的检测盒。我们的测试不仅涉及液体样品的测量,还涉及涂覆在XPS上的干燥生物样品的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号