首页> 美国卫生研究院文献>Membranes >Dynamic Properties of Water Confined in Graphene-Based Membrane: A Classical Molecular Dynamics Simulation Study
【2h】

Dynamic Properties of Water Confined in Graphene-Based Membrane: A Classical Molecular Dynamics Simulation Study

机译:石墨烯基膜中水的动态特性:经典分子动力学模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We performed molecular dynamics simulations of water molecules inside a hydrophobic membrane composed of stacked graphene sheets. By decreasing the density of water molecules inside the membrane, we observed that water molecules form a droplet through a hydrogen bond with each other in the hydrophobic environment that stacked graphene sheets create. We found that the water droplet translates as a whole body rather than a dissipate. The translational diffusion coefficient along the graphene surface increases as the number of water molecules in the droplet decreases, because the bigger water droplet has a stronger van der Waals interaction with the graphene surface that hampers the translational motion. We also observed a longer hydrogen bond lifetime as the density of water decreased, because the hydrophobic environment limits the libration motion of the water molecules. We also calculated the reorientational correlation time of the water molecules, and we found that the rotational motion of confined water inside the membrane is anisotropic and the reorientational correlation time of confined water is slower than that of bulk water. In addition, we employed steered molecular dynamics simulations for guiding the target molecule, and measured the free energy profile of water and ion penetration through the interstice between graphene sheets. The free energy profile of penetration revealed that the optimum interlayer distance for desalination is ~10 Å, where the minimum distance for water penetration is 7 Å. With a 7 Å interlayer distance between the graphene sheets, water molecules are stabilized inside the interlayer space because of the van der Waals interaction with the graphene sheets where sodium and chloride ions suffer from a 3–8 kcal/mol energy barrier for penetration. We believe that our simulation results would be a significant contribution for designing a new graphene-based membrane for desalination.
机译:我们对由堆叠的石墨烯片组成的疏水膜内部的水分子进行了分子动力学模拟。通过降低膜内部水分子的密度,我们观察到水分子在堆叠石墨烯片形成的疏水环境中通过氢键彼此形成液滴。我们发现水滴在整个身体中移动,而不是消散。随着液滴中水分子数量的减少,沿石墨烯表面的平移扩散系数增加,这是因为较大的水滴与石墨烯表面的范德华相互作用更强,阻碍了平移运动。我们还观察到随着水密度的降低,氢键的寿命更长,因为疏水环境限制了水分子的自由运动。我们还计算了水分子的重排相关时间,发现膜内承压水的旋转运动是各向异性的,承压水的重排相关时间比散装水慢。此外,我们采用了可控的分子动力学模拟方法来指导目标分子,并测量了水的自由能分布图和通过石墨烯片之间的空隙渗透的离子。渗透的自由能曲线表明,脱盐的最佳层间距离约为10Å,其中最小的水渗透距离为7Å。石墨烯片之间的夹层距离为7Å,由于范德华斯与石墨烯片的范德华相互作用,其中钠和氯离子遭受3–8 kcal / mol的能垒穿透,因此水分子在层间空间内稳定。我们相信,我们的仿真结果将为设计一种新型的基于石墨烯的脱盐膜做出重大贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号