首页> 美国卫生研究院文献>Materials >Multiscale Modeling for Application-Oriented Optimization of Resistive Random-Access Memory
【2h】

Multiscale Modeling for Application-Oriented Optimization of Resistive Random-Access Memory

机译:面向应用的电阻式随机存取存储器的多尺度建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Memristor-based neuromorphic systems have been proposed as a promising alternative to von Neumann computing architectures, which are currently challenged by the ever-increasing computational power required by modern artificial intelligence (AI) algorithms. The design and optimization of memristive devices for specific AI applications is thus of paramount importance, but still extremely complex, as many different physical mechanisms and their interactions have to be accounted for, which are, in many cases, not fully understood. The high complexity of the physical mechanisms involved and their partial comprehension are currently hampering the development of memristive devices and preventing their optimization. In this work, we tackle the application-oriented optimization of Resistive Random-Access Memory (RRAM) devices using a multiscale modeling platform. The considered platform includes all the involved physical mechanisms (i.e., charge transport and trapping, and ion generation, diffusion, and recombination) and accounts for the 3D electric and temperature field in the device. Thanks to its multiscale nature, the modeling platform allows RRAM devices to be simulated and the microscopic physical mechanisms involved to be investigated, the device performance to be connected to the material’s microscopic properties and geometries, the device electrical characteristics to be predicted, the effect of the forming conditions (i.e., temperature, compliance current, and voltage stress) on the device’s performance and variability to be evaluated, the analog resistance switching to be optimized, and the device’s reliability and failure causes to be investigated. The discussion of the presented simulation results provides useful insights for supporting the application-oriented optimization of RRAM technology according to specific AI applications, for the implementation of either non-volatile memories, deep neural networks, or spiking neural networks.
机译:已经提出了基于忆阻器的神经形态系统作为冯·诺依曼计算体系结构的有希望的替代方案,该体系结构目前正受到现代人工智能(AI)算法所需的不断增长的计算能力的挑战。因此,针对特定AI应用的忆阻设备的设计和优化至关重要,但仍然极其复杂,因为必须考虑许多不同的物理机制及其相互作用,而在许多情况下,这些机制尚未得到充分理解。所涉及的物理机制的高度复杂性及其部分理解目前阻碍了忆阻设备的开发并阻碍了它们的优化。在这项工作中,我们使用多尺度建模平台解决了电阻随机存取存储器(RRAM)设备的面向应用的优化问题。所考虑的平台包括所有涉及的物理机制(即电荷传输和捕获以及离子产生,扩散和重组),并考虑了设备中的3D电场和温度场。由于其多尺度的性质,该建模平台允许对RRAM器件进行仿真并研究其微观物理机制,将器件性能与材料的微观性质和几何形状相关联,可以预测器件的电学特性,以及评估器件性能和可变性的形成条件(即温度,顺应电流和电压应力),要优化的模拟电阻开关以及器件的可靠性和故障原因。所提供的仿真结果的讨论为根据特定的AI应用支持RRAM技术的面向应用的优化,非易失性存储器,深度神经网络或尖峰神经网络的实现提供了有用的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号