首页> 美国卫生研究院文献>Journal of Biomedical Optics >Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media
【2h】

Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media

机译:基于双网格网格的蒙特卡洛算法用于复杂三维介质中的有效光子传输模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mesh-based Monte Carlo (MMC) method is an efficient algorithm to model light propagation inside tissues with complex boundaries, but choosing appropriate mesh density can be challenging. A fine mesh improves the spatial resolution of the output but requires more computation. We propose an improved MMC—dual-grid mesh-based Monte Carlo (DMMC)—to accelerate photon simulations using a coarsely tessellated tetrahedral mesh for ray-tracing computation and an independent voxelated grid for output data storage. The decoupling between ray-tracing and data storage grids allows us to simultaneously achieve faster simulations and improved output spatial accuracy. Furthermore, we developed an optimized ray-tracing technique to eliminate unnecessary ray–tetrahedron intersection tests in optically thick mesh elements. We validate the proposed algorithms using a complex heterogeneous domain and compare the solutions with those from MMC and voxel-based Monte Carlo. We found that DMMC with an unrefined constrained Delaunay tessellation of the boundary nodes yielded the highest speedup, ranging from to for various scattering settings, with nearly no loss in accuracy. In addition, the optimized ray-tracing technique offers excellent acceleration in high-scattering media, reducing the ray–tetrahedron test count by over 100-fold. Our DMMC software can be downloaded at .
机译:基于网格的蒙特卡洛(MMC)方法是一种模拟光在具有复杂边界的组织内部传播的有效算法,但是选择合适的网格密度可能会遇到挑战。精细的网格可以改善输出的空间分辨率,但需要更多的计算。我们提出了一种改进的MMC(基于双网格网格的蒙特卡洛(DMMC)),以使用粗糙镶嵌的四面体网格进行光线跟踪计算,并使用独立的体素网格来存储输出数据,从而加速光子仿真。光线跟踪和数据存储网格之间的解耦使我们能够同时实现更快的仿真和更高的输出空间精度。此外,我们开发了一种优化的射线追踪技术,以消除光学上较厚的网格元素中不必要的射线-四面体相交测试。我们使用复杂的异构域验证提出的算法,并将解决方案与MMC和基于体素的Monte Carlo的解决方案进行比较。我们发现,DMMC具有边界节点的未约束约束Delaunay细分,可产生最高的加速速度,对于各种散射设置,范围从到,几乎没有精度损失。此外,优化的射线追踪技术可在高散射介质中提供出色的加速性能,从而使射线四面体的测试次数减少了100倍以上。我们的DMMC软件可以从下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号