首页> 美国卫生研究院文献>International Journal of Molecular Sciences >New Insight into Mechanisms of Protein Adaptation to High Temperatures: A Comparative Molecular Dynamics Simulation Study of Thermophilic and Mesophilic Subtilisin-Like Serine Proteases
【2h】

New Insight into Mechanisms of Protein Adaptation to High Temperatures: A Comparative Molecular Dynamics Simulation Study of Thermophilic and Mesophilic Subtilisin-Like Serine Proteases

机译:蛋白质适应高温机制的新见解:嗜热和中温枯草杆菌蛋白酶样丝氨酸蛋白酶的比较分子动力学模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In high-temperature environments, thermophilic proteins must possess enhanced thermal stability in order to maintain their normal biological functions. However, the physicochemical basis of the structural stability of thermophilic proteins at high temperatures remains elusive. In this study, we performed comparative molecular dynamics simulations on thermophilic serine protease (THM) and its homologous mesophilic counterpart (PRK). The comparative analyses of dynamic structural and geometrical properties suggested that THM adopted a more compact conformation and exhibited more intramolecular interactions and lower global flexibility than PRK, which could be in favor of its thermal stability in high-temperature environments. Comparison between protein solvent interactions and the hydrophobicity of these two forms of serine proteases showed that THM had more burial of nonpolar areas, and less protein solvent hydrogen bonds (HBs), indicating that solvent entropy maximization and mobility may play a significant role in THM’s adaption to high temperature environments. The constructed funnel-like free energy landscape (FEL) revealed that, in comparison to PRK, THM had a relatively flat and narrow free energy surface, and a lower minimum free energy level, suggesting that the thermophilic form had lower conformational diversity and flexibility. Combining the FEL theory and our simulation results, we conclude that the solvent (entropy force) plays a significant role in protein adaption at high temperatures.
机译:在高温环境中,嗜热蛋白必须具有增强的热稳定性,才能维持其正常的生物学功能。然而,高温下嗜热蛋白的结构稳定性的物理化学基础仍然难以捉摸。在这项研究中,我们对嗜热丝氨酸蛋白酶(THM)及其同源嗜温对应物(PRK)进行了比较分子动力学模拟。对动态结构和几何性质的比较分析表明,THM比PRK具有更紧密的构型,并表现出更多的分子内相互作用和较低的整体柔性,这可能有利于其在高温环境下的热稳定性。蛋白质溶剂相互作用和这两种形式的丝氨酸蛋白酶的疏水性之间的比较表明,THM具有更多的非极性区域埋藏,而蛋白质溶剂氢键(HBs)较少,表明溶剂熵的最大化和迁移率可能在THM的适应性中起重要作用高温环境。所构造的漏斗状自由能景观(FEL)显示,与PRK相比,THM具有相对平坦且狭窄的自由能表面,并且最低自由能级较低,这表明嗜热形式的构象多样性和柔韧性较低。结合FEL理论和我们的模拟结果,我们得出结论,溶剂(熵力)在高温下对蛋白质的适应性中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号