首页> 美国卫生研究院文献>Biophysics and Physicobiology >Detection of cave pockets in large molecules: Spaces into which internal probes can enter but external probes from outside cannot
【2h】

Detection of cave pockets in large molecules: Spaces into which internal probes can enter but external probes from outside cannot

机译:检测大分子中的洞穴口袋:内部探针可以进入的空间但外部的外部探针则不能进入

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geometric features of macromolecular shapes are important for binding with other molecules. Kawabata, T. and Go, N. (2007) defined a pocket as a space into which a small probe can enter, but a large probe cannot. In 2010, mathematical morphology (MM) was introduced to provide a more rigorous definition, and the program GHECOM was developed using the grid-based representation of molecules. This method was simple, but effective in finding the binding sites of small compounds on protein surfaces. Recently, many 3D structures of large macromolecules have been determined to contain large internal hollow spaces. Identification and size estimation of these spaces is important for characterizing their function and stability. Therefore, we employ the MM definition of pocket proposed by Manak, M. (2019)—a space into which an internal probe can enter, but an external probe cannot enter from outside of the macromolecules. This type of space is called a “cave pocket”, and is identified through molecular grid-representation. We define a “cavity” as a space into which a probe can enter, but cannot escape to the outside. Three types of spaces: cavity, pocket, and cave pocket were compared both theoretically and numerically. We proved that a cave pocket includes a pocket, and it is equal to a pocket if no cavity is found. We compared the three types of spaces for a variety of molecules with different-sized spherical probes; cave pockets were more sensitive than pockets for finding almost closed internal holes, allowing for more detailed representations of internal surfaces than cavities provide.
机译:大分子形状的几何特征对于与其他分子结合很重要。 Kawabata,T.和Go,N.(2007)将口袋定义为一个小探针可以进入的空间,而大探针则不能进入。 2010年,引入了数学形态学(MM)以提供更严格的定义,并且使用基于网格的分子表示法开发了GHECOM程序。该方法很简单,但是有效地发现了蛋白质表面小化合物的结合位点。近来,已经确定了大分子的许多3D结构包含大的内部空心空间。这些空间的识别和大小估计对于表征其功能和稳定性很重要。因此,我们采用了Manak,M.(2019)提出的``口袋''的MM定义-一个内部探针可以进入但外部探针不能从大分子外部进入的空间。这种类型的空间称为“凹穴”,通过分子网格表示法进行识别。我们将“空腔”定义为探针可以进入但不能逃逸到外部的空间。从理论上和数值上比较了三种类型的空间:空腔,凹穴和洞穴凹穴。我们证明了一个洞穴口袋包含一个口袋,如果没有发现空腔,它等于一个口袋。我们用不同大小的球形探针比较了三种分子的空间类型。穴袋比穴袋更灵敏,可以发现几乎闭合的内部孔,从而比腔体提供更详细的内部表面表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号