首页> 美国卫生研究院文献>Biophysics and Physicobiology >Methodological improvements for the analysis of domain movements in large biomolecular complexes
【2h】

Methodological improvements for the analysis of domain movements in large biomolecular complexes

机译:大型生物分子复合物中域运动分析的方法学改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Domain movements play a prominent role in the function of many biomolecules such as the ribosome and F F -ATP synthase. As more structures of large biomolecules in different functional states become available as experimental techniques for structure determination advance, there is a need to develop methods to understand the conformational changes that occur. DynDom and DynDom3D were developed to analyse two structures of a biomolecule for domain movements. They both used an original method for domain recognition based on clustering of “rotation vectors”. Here we introduce significant improvements in both the methodology and implementation of a tool for the analysis of domain movements in large multimeric biomolecules. The main improvement is in the recognition of domains by using all six degrees of freedom required to describe the movement of a rigid body. This is achieved by way of Chasles’ theorem in which a rigid-body movement can be described as a screw movement about a unique axis. Thus clustering now includes, in addition to rotation vector data, screw-axis location data and axial climb data. This improves both the sensitivity of domain recognition and performance. A further improvement is the recognition and annotation of interdomain bending regions, something not done for multimeric biomolecules in DynDom3D. This is significant as it is these regions that collectively control the domain movement. The new stand-alone, platform-independent implementation, DynDom6D, can analyse biomolecules comprising protein, DNA and RNA, and employs an alignment method to automatically achieve the required equivalence of atoms in the two structures.
机译:域运动在许多生物分子例如核糖体和F F -ATP合酶的功能中起着重要作用。随着更多的处于不同功能状态的大生物分子的结构随着用于结构确定的实验技术的发展而变得可用,需要开发一种方法来理解发生的构象变化。 DynDom和DynDom3D的开发目的是分析生物分子的两种结构以进行域运动。他们都使用了基于“旋转向量”聚类的原始方法来进行域识别。在这里,我们介绍了用于分析大型多聚生物分子中域运动的工具的方法论和实现方面的重大改进。主要的改进是通过使用描述刚体运动所需的所有六个自由度来识别域。这是通过Chasles定理实现的,在该定理中,刚体运动可以描述为绕唯一轴的螺旋运动。因此,除旋转矢量数据外,聚类现在还包括螺杆轴位置数据和轴向爬升数据。这样既提高了域识别的敏感性,又提高了性能。进一步的改进是域间弯曲区域的识别和注释,这对于DynDom3D中的多聚生物分子而言是无法做到的。这很重要,因为正是这些区域共同控制了域的移动。新的独立,平台无关的实现DynDom6D可以分析包含蛋白质,DNA和RNA的生物分子,并采用比对方法自动实现两个结构中所需的原子当量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号