首页> 美国卫生研究院文献>Biophysical Journal >Continuum Gating Current Models Computed with Consistent Interactions
【2h】

Continuum Gating Current Models Computed with Consistent Interactions

机译:连续相互作用计算的连续门控电流模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The action potential of nerve and muscle is produced by voltage-sensitive channels that include a specialized device to sense voltage. The voltage sensor depends on the movement of charges in the changing electric field as suggested by Hodgkin and Huxley. Gating currents of the voltage sensor are now known to depend on the movements of positively charged arginines through the hydrophobic plug of a voltage sensor domain. Transient movements of these permanently charged arginines, caused by the change of transmembrane potential V, further drag the S4 segment and induce opening/closing of the ion conduction pore by moving the S4-S5 linker. This moving permanent charge induces capacitive current flow everywhere. Everything interacts with everything else in the voltage sensor and protein, and so it must also happen in its mathematical model. A Poisson-Nernst-Planck (PNP)-steric model of arginines and a mechanical model for the S4 segment are combined using energy variational methods in which all densities and movements of charge satisfy conservation laws, which are expressed as partial differential equations in space and time. The model computes gating current flowing in the baths produced by arginines moving in the voltage sensor. The model also captures the capacitive pile up of ions in the vestibules that link the bulk solution to the hydrophobic plug. Our model reproduces the signature properties of gating current: 1) equality of ON and OFF charge Q in integrals of gating current, 2) saturating voltage dependence in the Q(charge)-voltage curve, and 3) many (but not all) details of the shape of gating current as a function of voltage. Our results agree qualitatively with experiments and can be improved by adding more details of the structure and its correlated movements. The proposed continuum model is a promising tool to explore the dynamics and mechanism of the voltage sensor.
机译:神经和肌肉的动作电位是由电压敏感通道产生的,该通道包括一个专门的电压感应装置。如霍奇金和赫x黎所建议的,电压传感器取决于电荷在变化的电场中的运动。现在已知电压传感器的门控电流取决于带正电荷的精氨酸通过电压传感器域的疏水塞的运动。由跨膜电位V的变化引起的这些永久带电的精氨酸的瞬态运动,进一步拖曳了S4链段,并通过移动S4-S5连接子诱导了离子传导孔的打开/关闭。这种移动的永久电荷在各处感应出电容性电流。一切都与电压传感器和蛋白质中的其他所有东西相互作用,因此它也必须在其数学模型中发生。使用能量变分方法将精氨酸的Poisson-Nernst-Planck(PNP)-空间模型和S4段的力学模型结合在一起,其中所有电荷的密度和运动均满足守恒定律,表示为空间和空间中的偏微分方程。时间。该模型计算精氨酸在电压传感器中移动产生的镀液中的选通电流。该模型还捕获将前体溶液连接到疏水塞的前庭离子的电容性堆积。我们的模型再现了门控电流的特征:1)门控电流积分中的开和关电荷Q相等,2)Q(充电)-电压曲线中的饱和电压依赖性,以及3)许多(但不是全部)细节门控电流形状随电压的变化关系。我们的结果在质量上与实验吻合,可以通过增加结构及其相关运动的更多细节来改善。所提出的连续体模型是探索电压传感器的动力学和机理的有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号