首页> 美国卫生研究院文献>Annals of Translational Medicine >Mitochondrial solar sensitivity: evolutionary and biomedical implications
【2h】

Mitochondrial solar sensitivity: evolutionary and biomedical implications

机译:线粒体太阳敏感性:进化和生物医学意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Depending on cellular demand or oxidative stress, mitochondria produce adenosine triphosphate (ATP) or reactive oxygen species (ROS), thereby controlling the entire scale of cellular energy supply or disease, respectively. While deficiency in ROS can compromise the immune system, excessive ROS levels contribute to a large number of pathological conditions, including retinal, neurodegenerative and cardiovascular disease as well as cancer. Aging is also a process accelerated by ROS. There is one noninvasive tool allowing us to precisely control both mitochondrial ATP and ROS: red-to-near infrared (R-NIR) light. The understanding why and how R-NIR light interacts with mitochondria was missing so far in the literature. Here we present a unified model for the interaction of R-NIR photons with three mitochondrial key players involved in ATP and ROS generation: ATP synthase, cytochrome c (CYTc) and cytochrome c oxidase (COX). The new model allows us to predictably control ATP and ROS generation in mitochondria by R-NIR light. Furthermore, comparison of the action spectrum of R-NIR light related to mitochondrial ATP and ROS generation with the spectral solar irradiance on Earth, puts us in the position to propose an evolutionary model describing the coordinated interplay of solar irradiation and water on the development of mitochondria on Earth. It accurately predicts which wavelengths of light provides maximum benefit for any desired clinical application and provides valuable hints regarding a time point for the evolutionary provenance of the mitochondrion.
机译:取决于细胞需求或氧化应激,线粒体产生三磷酸腺苷(ATP)或活性氧(ROS),从而分别控制细胞能量供应或疾病的整个规模。 ROS不足会损害免疫系统,但ROS水平过高会导致许多病理状况,包括视网膜,神经退行性疾病和心血管疾病以及癌症。老化也是ROS加速的过程。有一种非侵入性工具可让我们精确控制线粒体ATP和ROS:红至近红外(R-NIR)光。迄今为止,关于R-NIR光与线粒体相互作用的原因和了解尚缺乏文献报道。在这里,我们为R-NIR光子与参与ATP和ROS生成的三个线粒体关键参与者:ATP合酶,细胞色素c(CYTc)和细胞色素c氧化酶(COX)的相互作用提供了一个统一的模型。新模型使我们能够通过R-NIR光可预测地控制线粒体中ATP和ROS的产生。此外,将与线粒体ATP和ROS产生相关的R-NIR光的作用谱与地球上的光谱太阳辐照度进行比较,使我们能够提出一个演化模型,描述太阳辐照与水在水体发育过程中相互作用的相互作用。地球上的线粒体。它准确地预测了哪种波长的光可以为任何所需的临床应用带来最大的收益,并为线粒体进化起源的时间点提供了宝贵的提示。

著录项

  • 期刊名称 Annals of Translational Medicine
  • 作者

    Andrei P. Sommer;

  • 作者单位
  • 年(卷),期 2020(8),5
  • 年度 2020
  • 页码 -1
  • 总页数 6
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

  • 入库时间 2022-08-21 11:35:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号