首页> 美国卫生研究院文献>Advanced Science >Metal Coordination‐Mediated Functional Grading and Self‐Healing in Mussel Byssus Cuticle
【2h】

Metal Coordination‐Mediated Functional Grading and Self‐Healing in Mussel Byssus Cuticle

机译:贻贝比索表皮的金属配位介导的功能分级和自我修复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metal‐containing polymer networks are ubiquitous in biological systems, and their unique structures enable a variety of fascinating biological behaviors. Cuticle of mussel byssal threads, containing Fe‐catecholate complexes, shows remarkably high hardness, high extensibility, and self‐healing capability. Understanding strengthening and self‐healing mechanisms is essential for elucidating animal behaviors and rationally designing mussel‐inspired materials. Here, direct evidence of Fe and Fe gradient distribution across the cuticle thickness is demonstrated, which shows more Fe inside the inner cuticle, to support the hypothesis that the cuticle is a functionally graded material with high stiffness, extensibility, and self‐healing capacity. The mechanical tests of the mussel threads show that both strength and extensibility of the threads decrease with increasing oxygen contents, but this property degradation can be restored upon removing the oxygen. The first‐principles calculations explain the change in iron coordination, which plays a key role in strengthening, degradation, and self‐healing of the polymer networks. The oxygen absorbs on metal ions, weakening the iron‐catecholate bonds in the cuticle and collagen core, but this process can be reversed by sea water. These findings can have important implications in the design of next‐generation bioinspired robust, highly extensible materials, and catalysis.
机译:含金属的聚合物网络在生物系统中无处不在,其独特的结构可实现各种令人着迷的生物学行为。贻贝基底线的表皮含有儿茶酚酸铁络合物,具有很高的硬度,高延展性和自愈能力。了解强化和自我修复机制对于阐明动物行为和合理设计贻贝启发性材料至关重要。在此,直接证明了Fe和Fe在整个角质层厚度上的梯度分布,表明内角质层内部有更多的Fe,以支持以下假设:角质层是一种具有高刚度,可延展性和自愈能力的功能梯度材料。贻贝线的机械测试表明,线的强度和可伸长性都随着氧气含量的增加而降低,但是这种特性的降低可以在除去氧气后得以恢复。第一性原理计算解释了铁配位的变化,铁的配位在聚合物网络的强化,降解和自我修复中起着关键作用。氧吸收金属离子,削弱了表皮和胶原蛋白核心中的儿茶酚酸铁键,但是海水可以逆转这一过程。这些发现可能对下一代生物启发的坚固,高度可扩展的材料的设计和催化具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号