首页> 美国卫生研究院文献>Advanced Science >Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms
【2h】

Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms

机译:用于芯片实验室平台的Nanovortex驱动全介电光学扩散促进和分选概念

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ever‐growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand‐new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light−matter interactions. A concept is proposed, featuring dual on‐chip functionality: boosted optically driven diffusion and nanoparticle sorting. High‐index dielectric nanoantennae is specially designed to ensure strongly enhanced spin−orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl−spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam‐based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving‐part‐free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on‐chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving‐part‐free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light‐controlled navigation of nanoparticles, viruses or biomolecules.
机译:不断发展的微流体领域要求以缩小的比例精确,灵活地控制流体流动。当前的限制要求在微室和微反应器内部进行多种操作的各种可控组件。在这种情况下,全新的纳米光子方法可以通过微调的光相互作用来显着增强现有功能,从而提供独特的功能。提出了一个具有双重片上功能的概念:增强的光学驱动扩散和纳米颗粒分类。高折射率电介质纳米天线经过专门设计,可确保自旋轨道角动量从激光束到散射场的传输大大增强。因此,亚波长光学纳米涡旋通过卷曲自旋光学力和辐射压力之间的相互作用而出现,从而驱动等离子体纳米粒子的螺旋运动。纳米涡流的大小比传统的基于波束的方法小一个数量级。纳米粒子介导了纳米限制的流体运动,从而实现了微腔室内无移动部件的纳米混合。此外,利用卷曲光学力的大小无关紧要,可以实现金纳米颗粒的精确纳米级分选,这是片上分离和过滤所必需的。总而言之,引入了一个通用平台,可进一步缩小无移动部件的光学驱动微流控芯片的尺寸,从而实现快速化学分析,乳剂制备或通过梯度控制纳米颗粒,病毒或生物分子的光导产生化学梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号