首页> 美国卫生研究院文献>Advanced Science >Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces
【2h】

Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces

机译:石墨烯涂层表面可实现宏观超润滑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Friction and wear remain the primary modes for energy dissipation in moving mechanical components. Superlubricity is highly desirable for energy saving and environmental benefits. Macroscale superlubricity was previously performed under special environments or on curved nanoscale surfaces. Nevertheless, macroscale superlubricity has not yet been demonstrated under ambient conditions on macroscale surfaces, except in humid air produced by purging water vapor into a tribometer chamber. In this study, a tribological system is fabricated using a graphene‐coated plate (GCP), graphene‐coated microsphere (GCS), and graphene‐coated ball (GCB). The friction coefficient of 0.006 is achieved in air under 35 mN at a sliding speed of 0.2 mm s for 1200 s in the developed GCB/GCS/GCP system. To the best of the knowledge, for the first time, macroscale superlubricity on macroscale surfaces under ambient conditions is reported. The mechanism of macroscale superlubricity is due to the combination of exfoliated graphene flakes and the swinging and sliding of the GCS, which is demonstrated by the experimental measurements, ab initio, and molecular dynamics simulations. These findings help to bridge macroscale superlubricity to real world applications, potentially dramatically contributing to energy savings and reducing the emission of carbon dioxide to the environment.
机译:摩擦和磨损仍然是运动中的机械部件耗能的主要方式。为了节省能源和环境效益,超润滑是非常理想的。宏观上的超润滑性以前是在特殊环境下或在弯曲的纳米级表面上进行的。然而,除了在环境条件下在大尺度表面上,还没有证明大尺度的超润滑性,除了在通过将水蒸气吹入摩擦腔中产生的潮湿空气中。在这项研究中,摩擦系统是使用石墨烯涂层板(GCP),石墨烯涂层微球(GCS)和石墨烯涂层球(GCB)制造的。在开发的GCB / GCS / GCP系统中,在35 mN的空气中以0.2 mm s的滑动速度持续1200 s时,可获得0.006的摩擦系数。据了解,这是首次报道了在环境条件下宏观表面的宏观超润滑性。宏观上的超润滑机理是由于石墨片剥落和GCS的摆动和滑动的结合,这通过实验测量,从头算和分子动力学模拟得到证明。这些发现有助于将超大规模的超润滑性与实际应用联系起来,有可能极大地节省能源并减少对环境的二氧化碳排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号