首页> 美国卫生研究院文献>other >Ultrasonic Tracking of Acoustic Radiation Force-Induced Displacements in Homogeneous Media
【2h】

Ultrasonic Tracking of Acoustic Radiation Force-Induced Displacements in Homogeneous Media

机译:均相介质中声辐射力引起的位移的超声跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of ultrasonic methods to track the tissue deformation generated by acoustic radiation force is subject to jitter and displacement underestimation errors, with displacement underestimation being primarily caused by lateral and elevation shearing within the point spread function (PSF) of the ultrasonic beam. Models have been developed using finite element methods and Field II, a linear acoustic field simulation package, to study the impact of focal configuration, tracking frequency, and material properties on the accuracy of ultrasonically tracking the tissue deformation generated by acoustic radiation force excitations. These models demonstrate that lateral and elevation shearing underneath the PSF of the tracking beam leads to displacement underestimation in the focal zone. Displacement underestimation can be reduced by using tracking beams that are narrower than the spatial extent of the displacement fields. Displacement underestimation and jitter decrease with time after excitation as shear wave propagation away from the region of excitation reduces shearing in the lateral and elevation dimensions. The use of higher tracking frequencies in broadband transducers, along with 2D focusing in the elevation dimension, will reduce jitter and improve displacement tracking accuracy. Relative displacement underestimation remains constant as a function of applied force, while jitter increases with applied force. Underdeveloped speckle (SNR <1.91) leads to greater levels of jitter and peak displacement underestimation. Axial shearing is minimal over the tracking kernel lengths used in Acoustic Radiation Force Impulse (ARFI) imaging and thus does not impact displacement tracking.
机译:使用超声方法跟踪由声辐射力产生的组织变形会产生抖动和位移低估误差,而位移低估主要是由超声波束的点扩散函数(PSF)内的横向和高程剪切引起的。使用有限元方法和Field II(线性声场仿真程序包)开发了模型,以研究焦点配置,跟踪频率和材料属性对超声跟踪声辐射力激发产生的组织变形的准确性的影响。这些模型表明,跟踪光束的PSF下方的横向剪切和仰角剪切导致焦点区域中的位移低估。通过使用比位移场的空间范围窄的跟踪光束,可以减少位移低估。激励后,位移低估和抖动随时间减小,因为剪切波传播远离激励区域,从而减小了横向和高程方向的剪切力。在宽带换能器中使用更高的跟踪频率,以及在仰角维度上进行2D聚焦,将减少抖动并提高位移跟踪精度。相对位移低估根据施加的力保持恒定,而抖动随施加的力而增加。斑点不发达(SNR <1.91)会导致更大的抖动和峰值位移低估。在声辐射力脉冲(ARFI)成像中使用的跟踪核长度上,轴向剪切力最小,因此不会影响位移跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号