首页> 美国卫生研究院文献>other >Multiple solutions to inefficient lesion bypass by T7 DNA polymerase
【2h】

Multiple solutions to inefficient lesion bypass by T7 DNA polymerase

机译:通过T7 DNA聚合酶解决低效率病灶旁路的多种解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We hypothesize that enzymatic switching during translesion synthesis (TLS) to relieve stalled replication forks occurs during transitions from preferential to disfavored use of damaged primer–templates, and that the polymerase or 3′-exonuclease used for each successive nucleotide incorporated is the one whose properties result in the highest efficiency and the highest fidelity of bypass. Testing this hypothesis requires quantitative determination of the relative lesion bypass ability of both TLS polymerases and major replicative polymerases. As a model of the latter, here we measure the efficiency and fidelity of cis–syn TT dimer and abasic site bypass using the structurally well-characterized T7 DNA polymerase. No bypass of either lesion occurred during a single round of synthesis, and the exonuclease activity of wild-type T7 DNA polymerase was critical in preventing TLS. When repetitive cycling of the exonuclease-deficient enzyme was allowed, limited bypass did occur but hundreds to thousands of cycles were required to achieve even a single bypass event. Analysis of TLS fidelity indicated that these rare bypass events involved rearrangements of the template and primer strands, insertions opposite the lesion, and combinations of these events, with the choice among these strongly depending on the sequence context of the lesion. Moreover, the presence of a lesion affected the fidelity of copying adjacent undamaged template bases, even when lesion bypass itself was correct. The results also indicate that a TT dimer presents a different type of block to the polymerase than an abasic site, even though both lesions are extremely potent blocks to processive synthesis. The approaches used here to quantify the efficiency and fidelity of TLS can be applied to other polymerase–lesion combinations, to provide guidance as to which of many possible polymerases is most likely to bypass various lesions in biological contexts.
机译:我们假设,在转移合成(TLS)期间进行酶促切换以缓解停滞的复制叉,是在从优先使用到不利使用受损引物模板的过渡过程中发生的,并且用于每个连续核苷酸的聚合酶或3'-核酸外切酶都是其特性导致最高的效率和最高的保真度。要验证该假设,就需要定量确定TLS聚合酶和主要复制性聚合酶的相对损伤旁路能力。作为后者的模型,在这里我们使用结构良好的T7 DNA聚合酶测量顺式-顺式TT二聚体和无碱基位点旁路的效率和保真度。在单轮合成过程中,没有发生任何病变的旁路,并且野生型T7 DNA聚合酶的核酸外切酶活性对于预防TLS至关重要。当允许核酸外切酶缺陷型酶重复循环时,确实发生了有限的旁路,但需要数百至数千个循环才能实现单个旁路事件。 TLS保真度分析表明,这些罕见的旁路事件涉及模板和引物链的重排,与病灶相对的插入以及这些事件的组合,其中的选择很大程度上取决于病灶的序列背景。此外,即使病变旁路本身是正确的,病变的存在也会影响复制相邻的未损坏模板碱基的保真度。结果还表明,TT二聚体对聚合酶的阻滞作用与无碱基位点不同,即使这两种病变都是进行合成的极强力阻滞。此处用于量化TLS效率和保真度的方法可以应用于其他聚合酶-病变组合,以提供指导,以指导多种可能的聚合酶在生物学环境中最有可能绕过各种病变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号