首页> 美国卫生研究院文献>other >High performance computing in biology: multimillion atom simulations of nanoscale systems
【2h】

High performance computing in biology: multimillion atom simulations of nanoscale systems

机译:生物学中的高性能计算:纳米系统的数百万个原子模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nanoscale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail.
机译:计算方法已在生物学中用于序列分析(生物信息学),全原子模拟(分子动力学和量子计算),并且最近用于建模生物网络(系统生物学)。在这三种技术中,就计算负载,通信速度和内存负载而言,全原子仿真当前是最需要计算的。静电力计算和动态负载平衡方面的突破使大型生物分子复合物的分子动力学模拟成为可能。在这里,我们报告了核糖体的模拟结果,使用了约264万个原子,这是迄今为止发布的最大的全原子生物分子模拟。研究了其他几个具有不同原子数的纳米级系统,以测量Los Alamos国家实验室Q Machine上NAMD分子动力学模拟程序的性能。我们证明了数百万个原子系统代表了大型超级计算机上NAMD代码的“最佳位置”。 NAMD在1024个CPU上为核糖体系统显示了前所未有的85%并行缩放效率。我们还审查了核糖体的近期靶向分子动力学模拟,证明对研究这种大型生物分子复合物的原子细节构象变化非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号