首页> 美国卫生研究院文献>other >Fluorescent Resonance Energy Transfer: A Tool for Probing Molecular Cell-Biomaterial Interactions in Three Dimensions
【2h】

Fluorescent Resonance Energy Transfer: A Tool for Probing Molecular Cell-Biomaterial Interactions in Three Dimensions

机译:荧光共振能量转移:三维探测分子细胞-生物材料相互作用的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current paradigm in designing biomaterials is to optimize material chemical and physical parameters based on correlations between these parameters and downstream biological responses, whether in vitro or in vivo. Extensive developments in molecular design of biomaterials have facilitated identification of several biophysical and biochemical variables (e.g. adhesion peptide density, substrate elastic modulus) as being critical to cell response. However, these empirical observations do not indicate whether different parameters elicit cell responses by modulating redundant variables of the cell-material interface (e.g. number of cell-material bonds, cell-matrix mechanics). Recently, a molecular fluorescence technique, Fluorescence Resonance Energy Transfer (FRET) has been applied to quantitatively analyze parameters of the cell-material interface for both two and three-dimensional adhesion substrates. Tools based on FRET have been utilized to quantify several parameters of the cell-material interface relevant to cell response, including molecular changes in matrix proteins induced by interactions both with surfaces and cells, the number of bonds between integrins and their adhesion ligands, and changes in the crosslink density of hydrogel synthetic extracellular matrix analogs. As such techniques allow both dynamic and 3D analyses they will be useful to quantitatively relate downstream cellular responses (e.g. gene expression) to the composition of this interface. Such understanding will allow bioengineers to fully exploit the potential of biomaterials engineered on the molecular scale, by optimizing material chemical and physical properties to a measurable set of interfacial parameters known to elicit a predictable response in a specific cell population. This will facilitate the rational design of complex, multi-functional biomaterials used as model systems for studying diseases or for clinical applications.
机译:设计生物材料的当前范例是基于这些参数与下游生物学响应(无论是体内还是体外)之间的相关性来优化材料化学和物理参数。生物材料分子设计的广泛发展促进了对细胞反应至关重要的几种生物物理和生化变量(例如粘附肽密度,底物弹性模量)的鉴定。然而,这些经验观察结果并未表明不同的参数是否通过调节细胞-材料界面的冗余变量(例如细胞-材料键的数目,细胞-基质力学)来引起细胞反应。近来,分子荧光技术,荧光共振能量转移(FRET)已被用于定量分析二维和三维粘附基材的细胞-材料界面的参数。基于FRET的工具已被用于量化与细胞反应相关的细胞-材料界面的多个参数,包括由与表面和细胞的相互作用诱导的基质蛋白的分子变化,整联蛋白及其粘附配体之间的键数以及变化水凝胶合成的细胞外基质类似物的交联密度。由于这样的技术允许动态和3​​D分析,它们将用于定量地将下游细胞反应(例如基因表达)与该界面的组成相关。通过将材料的化学和物理特性优化到一组可测量的界面参数(已知会在特定细胞群中引起可预测的响应),这种理解将使生物工程师能够充分利用在分子尺度上工程化的生物材料的潜力。这将有助于对用作研究疾病或临床应用的模型系统的复杂多功能生物材料进行合理设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号