首页> 美国卫生研究院文献>other >Characterization and Resolution of Evaporation-Mediated Osmolality Shifts that Constrain Microfluidic Cell Culture in Poly(dimethylsiloxane) Devices
【2h】

Characterization and Resolution of Evaporation-Mediated Osmolality Shifts that Constrain Microfluidic Cell Culture in Poly(dimethylsiloxane) Devices

机译:蒸发介导的重量克分子渗透率变化的表征和分辨率其限制了聚二甲基硅氧烷器件中的微流细胞培养

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evaporation is a critical problem when handling sub-microliter volumes of fluids. This paper characterizes this problem as it applies to microfluidic cell culture in poly(dimethylsiloxane) (PDMS) devices and provides a practical solution. Evaporation-mediated osmolality shifts through PDMS membranes with varying thicknesses (10, 1, 0.2 or 0.1 mm) were measured over 96 hours. Even in humidified cell culture incubators, evaporation through PDMS and associated shifts in the osmolality of culture media was significant and prevented mouse embryo and human endothelial cell growth and development. A simple diffusion model, where the measured diffusion coefficient for PDMS matches reported values of ~10−9 m2/s, accounts for these evaporation and osmolality shifts. To overcome this problem a PDMS-parylene-PDMS hybrid membrane was developed that greatly suppresses evaporation and osmolality shifts, yet possesses thinness and the flexibility necessary to interface with deformationbased microfluidic actuation systems, maintains the clarity for optical microscopy, and enables the successful development of single cell mouse embryos into blastocysts under static conditions and culture of human endothelial cells underdynamic recirculation of sub-microliter volumes of media. These insights and methods demonstrated specifically for embryo and endothelial cell studies will be generally useful for understanding and overcoming evaporation-associated effects in microfluidic cell cultures.
机译:处理亚微升体积的流体时,蒸发是一个关键问题。本文将其描述为适用于聚二甲基硅氧烷(PDMS)设备中的微流体细胞培养的问题,并提供了实用的解决方案。在96小时内测量了不同厚度(10、1、0.2或0.1 mm)的PDMS膜的蒸发介导的重量克分子渗透压浓度变化。即使在潮湿的细胞培养箱中,通过PDMS的蒸发以及培养基渗透压的相关变化也很重要,并阻止了小鼠胚胎和人类内皮细胞的生长和发育。一个简单的扩散模型,其中PDMS的测得扩散系数与〜10 −9 m 2 / s的报告值相匹配,说明了这些蒸发和重量克分子渗透浓度的变化。为了克服这个问题,开发了一种PDMS-聚对二甲苯-PDMS混合膜,该膜极大地抑制了蒸发和重量克分子渗透率的变化,但具有薄度和与基于变形的微流体驱动系统对接所必需的灵活性,保持了光学显微镜的清晰度,并能够成功开发将单细胞小鼠胚胎在静态条件下放入胚泡,并在亚微升体积的培养基的动态再循环下培养人内皮细胞。这些专门针对胚胎和内皮细胞研究证明的见解和方法通常可用于理解和克服微流细胞培养中与蒸发相关的效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号