首页> 美国卫生研究院文献>other >Effects of Implant Design Parameters on Fluid Convection Potentiating 3rd Body Debris Ingress into the Bearing Surface during THA Impingement/Subluxation
【2h】

Effects of Implant Design Parameters on Fluid Convection Potentiating 3rd Body Debris Ingress into the Bearing Surface during THA Impingement/Subluxation

机译:植入物设计参数对流体对流的影响在THA撞击/半脱位期间增强第三体碎屑进入轴承表面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aseptic loosening from polyethylene wear debris is the leading cause of failure for metal-on-polyethylene total hip implants. Third body debris ingress to the bearing space results in femoral head roughening and acceleration of polyethylene wear. How third body particles manage to enter the bearing space between the closely conforming articulating surfaces of the joint is not well understood. We hypothesize that one such mechanism is from convective fluid transport during subluxation of the total hip joint. To test this hypothesis, a three-dimensional computational fluid dynamics model was developed and validated, to quantify fluid ingress into the bearing space during a leg-cross subluxation event. The results indicated that extra-articular joint fluid could be drawn nearly to the pole of the cup with even very small separations of the femoral head (<0.60 mm). Debris suspended near the equator of the cup at the site of maximum fluid velocity just before the subluxation began could be transported to within 11° from the cup pole. Larger head diameters resulted in increased fluid velocity at all sites around the entrance to the gap compared to smaller head sizes, with fluid velocity being greatest along the anterosuperolateral cup edge, for all head sizes. Fluid pathlines indicated that suspended debris would reach similar angular positions in the bearing space regardless of head size. Increased inset of the femoral head into the acetabular cup resulted both in higher fluid velocity and in transport of third body debris further into the bearing space.
机译:聚乙烯磨损碎片产生的无菌松动是聚乙烯上金属全髋关节植入物失败的主要原因。第三体碎屑进入轴承空间会导致股骨头变粗糙并加速聚乙烯磨损。第三体粒子如何设法进入关节的紧密贴合的关节表面之间的轴承空间尚不清楚。我们假设一种这样的机制来自全髋关节半脱位期间的对流流体传输。为了验证这一假设,开发并验证了三维计算流体动力学模型,以量化腿部半脱位事件期间流体进入轴承空间的数量。结果表明,即使股骨头的间距很小(<0.60 mm),关节外关节液也几乎可以被吸到杯的极点。刚好在半脱位开始之前,在最大流体速度处,在杯的赤道附近悬浮的碎屑可以被传送到距杯杆11°以内的位置。与较小的头部尺寸相比,较大的头部直径导致间隙入口周围所有位置处的流体速度增加,对于所有头部尺寸,沿着前上外侧杯缘的流体速度最大。流体路径表明,悬浮的碎屑将在轴承空间中到达相似的角度位置,而不管头部尺寸如何。股骨头进入髋臼杯的插入增加,不仅导致较高的流体速度,而且导致第三体碎片进一步进入承窝空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号