首页> 美国卫生研究院文献>other >Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation catch and asynchronous muscle
【2h】

Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation catch and asynchronous muscle

机译:无脊椎动物的肌肉:细而粗的细丝结构;收缩的分子基础及其调控捕捉和异步肌

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
机译:这是对无脊椎动物肌肉的一系列经典评论中的第二篇。我们在这里介绍了细的和粗的细丝结构,力产生的分子基础及其调节,以及一些无脊椎动物肌肉,捕获肌和异步肌的两个特殊属性。无脊椎动物细丝类似于脊椎动物细丝,尽管螺旋结构和原肌球蛋白排列显示出很小的差异。或者,无脊椎动物的粗细丝与脊椎动物的横纹的粗细丝有很大不同,并且在无脊椎动物内显示出很大的变化。这种多样性的一部分源于副肌球蛋白含量的变化,这在非常大直径的无脊椎动物粗丝中会大大增加。其他原因是细丝骨架结构的变化相对较小,导致细丝的肌球蛋白头部位置大致相似(每14.5 nm旋转一个头部),但细节变化较大(方位角对准中的头部之间的距离从三到数千不等)冠)。力产生的杠杆臂基础在脊椎动物和无脊椎动物中都是常见的,在某些无脊椎动物中,这一过程在原子级附近被理解。无脊椎动物放线肌球蛋白既细(原肌球蛋白:肌钙蛋白)又很厚(主要是通过直接与肌球蛋白结合的Ca ++ )细丝调节的,而大多数无脊椎动物的肌肉都是双重调节的。这些机制在分子水平上已广为人知,但双重调控的行为效用却并非如此。粗丝相关的巨型蛋白twitchin的磷酸化状态最近被证明是捕获的分子基础。然而,尚未阐明基于异步肌肉活动的拉伸激活的分子基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号